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ABSTRACT 
Energy policies have been developed to reduce buildings’ impacts on climate change. As they require 

quantifying energy use, simulation tools can help designers in the decision process. There are several 

variables to be considered in early stage building design. By coupling building performance simulation with 

optimization methods, the designer can analyze multiple solutions and avoid excessive calculations. This 

paper applied a multi-objective genetic algorithm to find optimum solutions for a case study medium-rise 

office building in São Paulo – Brazil using passive design strategies to minimize initial construction cost and 

life-cycle energy cost. The method coupled EnergyPlus simulation software with the jEPlus+EA interface to 

run the optimization. 213 cases were simulated with five design variables: orientation, window-to-wall ratio, 

wall type, roof type and glazing type. The results were presented through a Pareto optimum front, with seven 

non-dominated solutions, grouped into two distinct clusters. An initial construction cost reduction of 6.7% 

was observed in one cluster’s optimal solution, when compared to the base case. In the other cluster, another 

optimal solution presented a decrease of 5.8% in the life-cycle energy cost from the base model. The design 

parameters recommended for a medium-rise office building in São Paulo from this multi-objective 

optimization include small window-to-wall ratio, insulated flat roofs and laminated glazing with low solar 

heat gain coefficient. The proposed method can be further developed for more complex building shapes and 

include thermal comfort and environmental impacts criteria. 

Keywords: Building simulation, genetic algorithm, early stage design, passive strategies. 
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1. INTRODUCTION 

The world’s energy demand has increased significantly in the past decades due to population growth and 

industrial development, resulting in higher carbon dioxide emissions and global warming. The building 

sector alone accounts for over 40% of the world’s total energy consumption, mainly from fossil fuels (EIA, 

2017). The efforts for mitigation of the environmental impact of this consumption has led energy policies 

towards energy-efficient building design (PÉREZ-LOMBARD; ORTIZ; POUT, 2008; BORGSTEIN; 

LAMBERTS; HENSEN, 2016). As these regulations move towards high-performance buildings and require 

quantifying energy use, computational simulation has been widely used to assist designers in the decision 

process. 

Whole building energy simulation programs like EnergyPlus, eQUEST and TRNSYS have been 

frequently used by designers to assess building performance in early design stages (PICCO; LOLLINI; 

MARENGO, 2014; ØSTERGÅRD; JENSEN; MAAGAARD, 2016). Although building performance 

simulation (BPS) tools are convenient for considering separate systems (mechanical, lighting, equipment) 

and the building’s envelope as co-existing parts (NEGENDAHL, 2015), there are still some setbacks. Most 

BPS tools were developed for HVAC engineers and the description method of the available information 

sometimes are inconsistent with the architect’s conceptual design process (YU et al., 2015). At this stage 

there are several variables to be considered, such as orientation, window-to-wall-ratio, material thermal 

properties and cost, so that exploring each possible solution for a simple building design can be an 

exhausting, time-consuming process. In this context, coupling building simulation tools with an optimization 

procedure to analyze multiple design solutions can minimize excessive amount of calculations (EVINS, 

2013). 

One of the most popular optimization methods for building energy analysis is the genetic algorithm 

(GA), a procedure that uses an analogy of the biological evolution of living organisms (MACHAIRAS; 

TSANGRASSOULIS; AXARLI, 2014; NGUYEN; REITER; RIGO, 2014). It is a heuristic search that 

modifies function values through predefined reproduction operators in a stochastic manner (HOBDAY; 

SMITH, 2000), developed by John Holland and presented in his book ‘Adaptation in Natural and Artificial 

Systems’ (HOLLAND, 1992). Various studies have used GAs in the design process using some user-friendly 

software interfaces, making optimization design more feasible both for architects and construction sector 

professionals. 

Wang, Zmeureanu and Rivard (2005) presented a multi-objective optimization model using life-cycle 

analysis to find optimal design solutions for economic and environmental criteria. Manzan and Pinto (2009) 

used a GA approach to optimize shading devices in an office building with ESP-r code simulations, resulting 

in a reduction of energy consumption up to 17% for different shading and glazing type configurations. 

Negendahl and Nielsen (2015) presented a holistic building design optimization for office buildings 

considering multiple criteria, like energy use, capital cost, daylighting and thermal comfort. According to the 

authors, machine automation is difficult to combine with quality-defined problems. A great methodological 

problem in the field is to relate performance criteria directly with design actions. This would require energy 

modelers and designers to work in an integrated environment starting at the early stage. 

A research study was conducted by Yu et al. (2015), where a multi-objective GA was combined with 

an artificial neural network (ANN) to find optimum residential building designs using energy consumption 

and indoor thermal comfort criteria. Still for residential buildings, Bre et al. (2016) used a single objective 

function GA to determine the most influential variables for a case study house. Another study utilized a 

graphical user interface (GUI) to analyze different architectural parameters for a room model using cooling 

and heating criteria (DELGARM et al., 2016). The optimization method applied was efficient in determining 

optimal solutions with conflicting objective functions. Following the literature review, it is clear the building 

performance simulation combined with optimization methods is a widely accepted and robust approach in 

sustainable and energy-efficient building design, especially in the conceptual stage. 

 

2. OBJECTIVE 

This paper focuses on the application of a multi-objective genetic algorithm, to find the Pareto front solutions 

of optimum building design alternatives. A case study of an early stage office building design that uses 

passive strategies to minimize two conflicting objective functions, the initial construction cost and the life-

cycle energy cost is presented. 
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3. METHOD 

The method combines the building performance simulation using EnergyPlus software (US DEPARTMENT 

OF ENERGY, 2016) and the graphical user interface (GUI) jEPlus+EA (ZHANG; KOROLIJA, 2018) to run 

the genetic algorithm and extract results. 

 

3.1 Multi-objective genetic algorithm 

A genetic algorithm begins by randomly selecting a population of possible solutions for the considered 

problem. Then the population evolves from one generation to the next using the objective function and 

selection, crossover and mutation operators. Each solution is represented by a string of bits (or chromosome), 

where each bit is called gene, and the values of each gene are the alleles (YU et al., 2015). 

A multi-objective genetic algorithm is based on Pareto-dominance. As the objective functions are 

usually conflicting, the algorithm presents a set of feasible solutions which have a non-dominated 

relationship, located on the Pareto front. To implement the BPS optimization for this case study, the 

jEPlus+EA software was used to solve the multi-objective problem. It is an open source tool that provides a 

convenient way to perform optimization for parametric building design through simulations using 

EnergyPlus (ZHANG, 2012). 

 

3.2 Building model description 

For this case study a model was designed using SketchUp 3D software (TRIMBLE INC., 2018) and saved as 

an EnergyPlus Input File (IDF) through the Euclid plugin. The base case consists of a three-story, 

rectangular-shaped office building, with 600 m² of total floor area and 3 m floor to ceiling height, with 25% 

of window-to-wall-ratio (WWR), with a 30-year life expectancy (Figure 1). Floors are composed of 

porcelain tiles over concrete slab and internal ceilings are made of gypsum boards. The windows have 5 cm 

aluminum frame and vertical dividers every 1.5 m of the glazing. 

Internal loads are kept constant through all simulations and take the default values from regulation 

NBR 16401-1 (ABNT, 2008). The occupancy area is 6.0 m²/person with a metabolic rate of 130 W/person in 

moderately active office work, and the electric equipment load is considered as medium office use of 

10.76 W/m². The lighting power density is 9.7 W/m², as required for a Level “A” efficient building from the 

Regulation for Energy Efficiency Labeling of Commercial Buildings (RTQ-C) (ELETROBRAS, 2014). 

The HVAC system is a Packaged Terminal Air Conditioner (PTAC) working from 6am to 10pm, 

Monday to Saturday. The system’s coefficient of performance (COP) for cooling is 3.4, the cooling setpoint 

is 24 ºC and heating setpoint is 20 ºC. The cooling and heating capacity and the supply air flow rate of the 

PTAC were auto sized by simulations. Cooling is provided by a direct expansion (DX) coil and a condensing 

unit with single speed compressor, and heating is provided by an electric coil. 

The building was simulated for the city of São Paulo, Brazil, in 23°32’ South latitude and 46°38’ West 

longitude. It is located on a humid subtropical climate region (Cfa), according to the Köppen-Geiger 

classification (PEEL; FINLAYSON; MCMAHON, 2007), with 74.3% of annual average relative humidity, a 

12.3 °C average minimum temperature in the winter and a 28.8 °C average maximum temperature in the 

summer (INMET, 2018). Figure 2 shows the monthly average temperature and relative humidity for São 

Paulo. 
 

 

Figure 1: Sketch of the office building base case 

 

Figure 2: Average temperature and relative humidity in São Paulo 
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3.3 Optimization parameters 

As the purpose of this study is to assist designers in the early stage of an architectural project, the model 

focus on initial construction cost of the building envelope and life-cycle energy cost. Variations of the 

HVAC system, occupancy, lighting and equipment density were not analyzed. 

 

3.3.1 Variables and constraints  

The optimization model is composed of variables, constraints and objective functions. Table 1 shows the 

defined variables and their corresponding constraints, while the properties of the wall, roof and glazing types 

can be found in Table 2. The building orientation is defined in EnergyPlus in degrees with clockwise 

direction being positive as shown in Figure 3. The building materials were defined as typical construction 

components from RTQ-C (ELETROBRAS, 2014). For simulation purposes, the wall and roof types were 

defined as equivalent layers in EnergyPlus according to Weber et al. (2017). 
 

Table 1: Constraints of the variables defined for the GA optimization 

Variables Unit Range 

Orientation Deg. 
0, 15, 30, 45, 60, 75, 90, 105, 

120, 135, 150, 165 

Window-to-wall ratio % 25, 50, 75 

Wall type - W1, W2, W3, W4, W5, W6 

Roof type - R1, R2, R3, R4, R5, R6 

Glazing type - G1, G2, G3, G4 
 

Figure 3: Orientation definition
 

Table 2: Composition, thermal properties and initial cost of the building envelope parameters used in the simulations 

Wall type 1 (W1) 

Layers: 

a. External plaster 

(2.5 cm) 

b. Ceramic brick 

(9.0 cm) 

c. Gypsum board 

(2.0 cm) 

 

U1 = 2.00 W/m²-K 

$1 = 12.40 USD/m² 

 

 

 

Wall type 2 (W2) 

Layers: 

a. External plaster 

(2.5 cm) 

b. Concrete block 

(9.0 cm) 

c. Gypsum board 

(2.0 cm) 

 

U2 = 2.24 W/m²-K 

$2 = 13.95 USD/m² 

 

 

 

Wall type 3 (W3) 

Layers: 

a. Porcelain tile 

(1.0 cm) 

b. Air gap 

(7.0 cm) 

c. Concrete block 

(9.0 cm) 

d. Gypsum board 

(2.0 cm) 

 

U3 = 1.65 W/m²-K 

$3 = 28.40 USD/m² 

 

 

 

Wall types 4 / 5 / 6 

Layers: 

a. Porcelain tile 

(1.0 cm) 

b. EPS insulation 

(2.0 – 4.0 – 6.0 cm) 

c. Concrete block 

(9.0 cm) 

d. Gypsum board 

(2.0 cm) 

 

U4 = 1.09 W/m²-K 

U5 = 0.72 W/m²-K 

U6 = 0.54 W/m²-K 

 

$4 = 32.50 USD/m² 

$5 = 34.70 USD/m² 

$6 = 36.90 USD/m² 

(W4 - W6) 

 

Roof type 1 (R1) 

Layers: 

a. Ceramic tile (1.0 cm) 

b. Air gap (15.0 cm) 

c. Pre-cast concrete and 

ceramic slab (8.0 cm) 

d. Internal plaster (2.0 cm) 

 

U1 = 2.00 W/m²-K 

$1 = 28.40 USD/m² 

 

 

Roof type 2 (R2) 

Layers: 

a. Metallic/PU panel (4.2 cm) 

b. Air gap (15.0 cm) 

c. Pre-cast concrete and 

ceramic slab (8.0 cm) 

d. Internal plaster (2.0 cm) 

 

U2 = 0.55 W/m²-K 

$2 = 59.80 USD/m² 

 

 

 

Roof type 3 (R3) 

Layers: 

a. Waterproof membrane (4 mm) 

b. Concrete slab (8.0 cm) 

c. Air gap (10.0 cm) 

d. Gypsum board (2.0 cm) 

 

U3 = 2.02 W/m²-K 

$3 = 26.20 USD/m² 

 

 

 

 

Roof types 4 / 5 / 6 (R4 - R6) 

Layers: 

a. Pebble layer (2.0 cm) 

b. Waterproof membrane (4 mm) 

c. EPS insulation (2 - 4 - 6 cm) 

d. Concrete slab (8.0 cm) 

e. Air gap (10.0 cm) 

f. Gypsum board (2.0 cm) 

 

U4 = 0.79 W/m²-K 

U5 = 0.58 W/m²-K 

U6 = 0.45 W/m²-K 

 

$4 = 37.30 USD/m² 

$5 = 39.50 USD/m² 

$6 = 41.70 USD/m² 

 



 

 2431 

 

Glazing type 1 (G1) 

Single tempered clear glass 

(6 mm) 

 

U1 = 5.80 W/m²-K 

SHGC1 = 0.82 

$ = 210 USD/m² 

Glazing type 2 (G2) 

Laminated clear glass  

(6 mm + PVB + 6 mm) 

 

U2 = 5.60 W/m²-K 

SHGC2= 0.38 

$ = 280 USD/m² 

Glazing type 3 (G3) 

Double insulated clear glass 

(6 mm + 10 mm air gap + 6 mm) 

 

U3 = 2.70 W/m²-K 

SHGC3 = 0.70 

$ = 400 USD/m² 

Glazing type 4 (G4) 

Double insulated reflective glass 

(6 mm + 10 mm air gap + 6 mm) 

 

U4 = 2.70 W/m²-K 

SHGC4 = 0.46 

$ = 480 USD/m² 

U: thermal transmittance 

SHGC: solar heat gain coefficient  

 

3.3.2 Objective functions 

Two objective functions were defined: the minimization of initial construction cost (IC) of the building’s 

envelope and the minimization of life cycle energy cost (LCE). LCE is part of the life-cycle analysis (LCA), 

which involves an assessment from owning, operating, maintaining and ultimately disposing of a project 

NIST Handbook 135 (FULLER; PETERSEN, 1995). However, the LCE used in his study considers only the 

electricity cost from the energy demand of the building, while operating, repair and maintenance costs are 

neglected. This approach refers to the early design stage, where usually architects do not have enough 

information to estimate the real-life building costs. 

With X representing a variable vector, the general expressions to calculate IC [$/m²] and LCE [$/m²] 

are shown in Equations 1 and 2 below: 
 

 

𝐼𝐶(𝑋) = 𝐺𝐹(𝑋) + 𝐼𝐹(𝑋) +𝑊 (𝑋) + 𝑅 (𝑋) + 𝐺 (𝑋) Equation 1 

 
𝐿𝐶 (𝑋) =  𝐶(𝑋) × 𝑃𝑉 Equation 2 

 
Where: 

GF ground floor cost [$/m²] 

IF  internal floors cost [$/m²] 

WT wall type cost [$/m²] 

RT roof type cost [$/m²] 

GT glazing type cost [$/m²] 

EC first year electricity cost for the city of São Paulo [$/m²] 

PV present value 

 

Both IC and LCE data are extracted as results from the Economic Calculations of EnergyPlus. IC is 

part of the component costs and LCE combines the electricity rate and life-cycle cost computations. For each 

year of study, the present value (PV) is calculated on EnergyPlus using Equation 3. 
 

𝑃𝑉𝑦𝑟 =
1

(1 + 𝐷𝑅)
 

Equation 3 

 

Where: 

DR discount rate 

 

The PV uses the discount (or interest) rate (DR) to determine the current equivalent value of a set of 

future cash flows, considering a forecast inflation rate. For energy costs, EnergyPlus multiplies the PV of 

each year by the price escalation of that year. For this study the DR used was the forecast interest rate in 

Brazil for the year of 2019, with a value of 0.65 from the Central Bank of Brazil (BRASIL, 2019). The price 

escalation is updated in EnergyPlus from the NIST Handbook 135 (FULLER; PETERSEN, 1995). Since the 

main source of energy used in the model building is electricity, the energy rate was obtained from the São 
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Paulo Electric Company (Enel). The rate for commercial buildings with over 200 kWh consumption per 

month is 0.16 USD/kWh, including a total of 30% taxes. 

 

3.3.3 Genetic algorithm 

The jEPlus+EA software adopts the non-dominated-and-crowding sorting genetic algorithm II (NSGA-II), 

developed by Srinivas and Deb (1994). This algorithm ensures convergence and spreading of the solution 

front and can maintain the population diversity. It is recognized as one of the most efficient multi-objective 

evolutionary algorithms (YU et al., 2015). 

For the GA implementation, the following parameters were selected, as recommended by Chen, Yang 

and Zhang (2017): population size = 10, number of generations = 50; crossover probability = 0.9; mutation 

probability = 0.1; the selection operator is the binary tournament selection. After the optimization run, the 

results were extracted from jEPlus+EA and stored in Excel files for evaluation. As mentioned before, the GA 

is based on Pareto-dominance, i.e., for each solution in the Pareto front, one objective cannot be minimized 

without increasing the other objective. This is why they represent the best solutions found in a multi-

objective optimization. The results for this study are presented in the next section. 

 

4. RESULTS 

The multi-objective optimization was run in a single scenario with Windows 10 operating system on a laptop 

computer (2.40 GHz Intel i7 processor, 8 GB RAM). The run took 45 minutes and the results were exported 

as CSV files for analysis in Excel software. A total of 213 solutions were simulated, and through the GA 

method, seven cases represent the non-dominated solutions, as presented in Figure 4. The dominated 

solutions are shown as light grey circles, the blue diamonds represent the initial population, the red circles 

are the fiftieth (final) generation, and the black circles represent the non-dominated solutions on the Pareto 

front. 

As the initial population was randomly selected, the results were widely distributed. From there to the 

final generation (red circles), there is a clear distribution difference, with the results concentrated on the 

bottom end of the Pareto front (here represented by the dashed curve). It can be noticed that the seven 

optimal solutions in the Pareto solutions appear clustered into two distinct groups. Solutions 1 through 4 (S1-

S4) are clustered on the upper end of the front, while solutions 5 through 7 (S5-S7) are located on the bottom 

end of the curve. The upper cluster contains the individuals with the lowest values for the initial construction 

cost (IC), ranging from 94.9 $/m² to 99.3 $/m², but life-cycle energy cost (LCE) values ranging from 

206.8 $/m² to 214.0 $/m². The bottom cluster holds the individuals with the lowest LCE (from 199.0 to 

199.9 $/m²) but higher IC values (from 114.4 to 127.1 $/m²). 
 

 

Figure 4: Multi-objective optimization chart. Evolution of the 20 generations towards the optimal solutions with initial construction 

cost (IC) and life-cycle energy cost (LCE) criteria 
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From Figure 4 the seven individuals that appear on the Pareto optimal front were further analyzed to 

understand the design parameters associated with them, as presented in Table 3. The results in the table were 

sorted from the smallest IC values to the largest. The first remark from the table is that all optimum results 

have a window-to-wall ratio (WWR) of 25%. This clearly indicates that large glazed facades are not 

recommended for subtropical climate regions like São Paulo, as solar heat gains from the glass increase 

cooling loads and consequently the electricity consumption. 

On the window aspect, only the glazing types G1 and G2 appear on the best solutions, probably 

because of the cost per square meter of the element. There is a significant price increase in double insulated 

glazing compared to monolithic or laminated glasses (400 $/m² and 480 $/m² compared to 200 $/m² and 

280 $/m²), respectively. A sensitivity analysis can be later conducted to determine if energy efficient glazing 

(with lower SHGC) would be selected in an optimization process if it was less expensive than current market 

prices. 

Regarding the opaque elements, the predominant wall type solution was W2 in both clusters (four out 

of seven), followed by two solutions with and W1 (the same as the base case) and only one solution with 

W5. Like the glazing elements, in this optimization study, the cost of the material had greater impact than its 

thermal properties. Even so, this indicates that simple traditional wall elements in Brazil (ceramic or concrete 

blocks with plaster) can be used in constructions with an energy and cost-efficient approach. On the other 

hand, the roof type was more diverse, and solutions with all roof types (R1-R5) were identified, although R3 

appears in two solutions in the upper cluster (S1 and S2) and R5 is present in S5 and S7 from the bottom 

cluster. This indicates that the roof plays a more important role in medium-rise buildings’ thermal 

performance. The low U-factor of the roof due to insulation ensures lower solar heat gains and decreases 

significantly the cooling loads and electricity consumption. In this case study, a flat concrete roof with a 4 

cm EPS insulation is a more suitable solution if the long-term energy consumption cost is observed, as it has 

similar thermal performance than a metallic/PU panel with a pre-cast concrete and ceramic slab but is 

considerably cheaper. 

As for the orientation, the optimum solutions have diversified values, with the north angle ranging 

from 0° to 135°. However, values 0° and 15° appear two times each, indicating that longer facades of the 

building facing north and south are more suitable for medium-rise office buildings, like the one in this study. 

The solutions S1 and S4 northwest and southeast (105º) or north-northwest and south-southeast (135º / 150º). 

The design solution S1, for example, have the longer facades facing east and west, and presented the higher 

life-cycle energy cost. These results show that different orientations can be combined with other design 

variables to achieve cost-energy efficiency. Also, further analysis on the orientation impact on the building 

energy consumption and thermal comfort is desired. 
 

Table 3: Parameters considered for the optimal solutions from the GA optimization 

Solution Orient. 
WWR 

[%] 

Wall 

type 

Roof 

type 

Glazing 

type 

Heating 

[kWh/m²-yr] 

Cooling 

[kWh/m²-yr] 

IC 

[$/m²] 

LCE 

[$/m²] 

Base case 0 25 W1 R1 G1 2.4 32.6 101.8 211.2 

S1 75 25 W1 R3 G1 3.1 33.2 94.9 214.0 

S2 15 25 W1 R3 G1 3.0 32.8 94.9 212.9 

S3 0 25 W2 R1 G1 2.4 31.7 96.6 209.0 

S4 135 25 W2 R4 G1 1.7 31.4 99.3 206.8 

S5 90 25 W2 R5 G2 1.9 28.1 114.4 199.9 

S6 15 25 W2 R2 G2 1.8 27.8 120.8 199.0 

S7 0 25 W5 R5 G2 0.8 28.9 127.1 199.3 

 

Comparing the optimum solutions from the Pareto front with the base case results, in the upper cluster, 

there is a 6.7% reduction in the initial construction cost on S1 and S2 (94.9 $/m² compared to 101.8 $/m²). 

However, the life-cycle energy cost is slightly increased by 1.3% on S1 (from 211.2 $/m² to 214.0 $/m²). On 

the other hand, in the bottom cluster, there is a 5.8% reduction in the LCE from the base case on S6 (from 

211.2 $/m² to 199.0 $/m²), even though the IC is increased by 18.6% (120.8 $/m² compared to 101.8 $/m²). 

In this case, the annual energy consumption for cooling is reduced from 32.6 to 27.8 kWh/m²-yr (14.7% 

less), which is an important energy saving if the 30-year life expectancy of the building is considered. 
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In this stage, once the Pareto optimum solutions set is obtained, the decision-making process lies with 

the professionals involved in the design of the building. Designers and engineers may select the best design 

by including other objectives. For example, if there is a limited initial construction budget, the solutions from 

upper cluster on Table 3 can be selected. However, if the client is willing to spend more on the construction 

for an energy-efficient building, a solution from the bottom cluster may be used.    

 

5. CONCLUSIONS 

This paper used a multi-objective genetic algorithm to find optimal solutions for an early stage office 

building design in a subtropical climate region, using passive strategies to minimize the initial construction 

cost and the life-cycle energy cost. The jEPlus+EA interface was used to run the genetic algorithm and 

extract results from the simulations using EnergyPlus software. Based on the analyzed results, some 

conclusions are presented. 

From a single scenario run, 213 solutions were simulated, and seven individuals compose the non-

dominated solutions on the Pareto optimal front. They were grouped into two distinct clusters, where the first 

one holds the results with lower initial construction cost and higher life-cycle energy cost. The second cluster 

have higher IC and lower LCE. Results from the upper cluster showed a decrease in IC of 6.7% in one 

solution and a 1.3% increase in LCE when compared to the base case. In the bottom cluster, even though IC 

presented an increase up to 18.6% in one solution, LCE was reduced by 5.8% from the base case. Based on 

these criteria, designers and engineers can select the most suitable design option. 

This case study was set for São Paulo, in a subtropical climate region. From the optimal solutions, 

there are some design recommendations for medium-rise office buildings. Different orientations can be used, 

so designers can have more freedom when locating the building on the site. A small window-to-wall ratio is 

more adequate for reducing solar heat gains. The roof type should have low thermal transmittance, and 

insulated flat roofs are energy-efficient and cheaper than sloped roofs with a non-ventilated attic. Monolithic 

and laminated glasses are preferred from the economical point of view. Even though insulated glazing can 

have lower SHGC, their market prices do not justify their use, but a sensitivity analysis can be conducted to 

determine the cost-efficiency relation. 

The proposed method used in this paper considered only the envelope parameters as decision variables 

and construction cost and life-cycle energy cost as objective functions, as usually in the early design stage 

architects have little information regarding the building actual operating costs. A more comprehensive life-

cycle analysis can include operating, repair and maintenance costs, so these aspects are suggested for future 

studies. This research is expected to further develop the method for more complex building shapes, with 

other design strategies. Analyzing the occupancy, lighting and equipment profiles, as well as the HVAC 

system is encouraged. Other important criteria like thermal comfort, natural ventilation and environmental 

impacts can also be studied in future works. 
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