ANÁLISE COMPARATIVA DE DUAS DIFERENTES ABORDAGENS NA SIMULAÇÃO DE PAREDES TROMBE NO ENERGYPLUS¹

AYMONE, J. L. F., Universidade Federal do Rio Grande do Sul, email: aymone@ufrgs.br; CUNHA, E. G. da, Universidade Federal de Pelotas, email: eduardogralacunha@yahoo.com.br; ZIEBELL, C. S., Universidade Federal do Rio Grande do Sul, email: clarissa.ziebell@ufrgs.br

ABSTRACT

The simulation of the thermal performance of buildings plays an important role in the correct architectural design. This paper is dedicated to the simulation of a passive air conditioning system: the Trombe wall. The goal is to evaluate the impact of using different ways to simulate Trombe walls in the EnergyPlus software. The results of a model where the Trombe wall is simulated through the ZoneThermalChimney object with another model using the AirflowNetwork group are compared. As a result, it was found that there were no significant differences in the mean hourly temperatures obtained for the two simulated models, which was on average equal to 0.37 °C.

Keywords: Trombe wall. EnergyPlus. Ventilation.

1 INTRODUÇÃO

A parede Trombe é um sistema de condicionamento passivo do ar, que pode proporcionar melhores condições de conforto térmico sem dispêndio de energia elétrica. Esse sistema é composto por três camadas caracterizadas como: um material de alta inércia térmica, uma câmara de ar, e por último e em contato com o exterior, uma lâmina de vidro, posicionado em frente à primeira camada. O vidro tem a função de evitar a perda de calor por convecção e por radiação para o exterior. As paredes Trombe devem ser voltadas para a orientação de maior insolação solar (LAMBERTS et al., 2014). No caso do hemisfério Sul, esta orientação, no período de inverno, é a Norte.

Quando a parede Trombe é utilizada para o aquecimento do ar ela pode ser não ventilada ou com ventilação interna. Já quando o sistema está voltado para o resfriamento, o ar é removido do ambiente pelo efeito chaminé (Figura 1).

Figura 1 – Exemplos de paredes Trombe: (A) Não ventilada; (B) Modo inverno, com termo-circulação do ar; (C) Modo verão, com ventilação cruzada

¹ AYMONE, J. L. F., CUNHA, E. G. da, ZIEBELL, C. S. Análise comparativa de duas diferentes abordagens na simulação de paredes Trombe no EnergyPlus. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 17., 2018, Foz do Iguaçu. **Anais**... Porto Alegre: ANTAC, 2018.

Fonte: Adaptado de Stazi et al. (2012)

Para simular a ventilação que ocorre em uma parede Trombe para o resfriamento do ar, Cavalcanti (2013) utilizou o grupo de objetos do *EnergyPlus* chamado de *AirflowNetwork*, que permite a simulação do fluxo de ar direcionado pelo vento (GU, 2007), como também o próprio efeito chaminé. Neste modelo, diversos nós se conectam através de ligações a componentes de fluxos de ar (U.S. DEPARTMENT OF ENERGY, 2016). Assume-se que o ar flui de um nó para o outro, o que simplifica o fluxo de ar em caminhos (GU, 2007).

Outra opção mais simples (por exigir um número menor de dados de entrada) para simular o efeito do fluxo de ar em uma parede Trombe por meio do *EnergyPlus*, é através do objeto *ZoneThermalChimney*. Este objeto foi criado para simular chaminés térmicas, que consistem em um *shaft* vertical que utiliza a radiação solar para intensificar a ventilação natural de edifícios.

2 OBJETIVO

Este trabalho tem como objetivo avaliar o impacto do uso de diferentes objetos no software Energy Plus na simulação de paredes Trombe.

3 MÉTODO

O trabalho utiliza a simulação computacional como estratégia de pesquisa. A primeira etapa deste trabalho consiste na montagem e configuração do modelo de simulação. São definidas diversas características, tais como geometria, orientação, localização, materiais e construções da superfície. Na segunda etapa este modelo é editado de duas maneiras distintas: na primeira, são inseridos os dados de ventilação através do grupo AirflowNetwork; na segunda, é inserido o objeto ZoneThermalChimney.

A geometria do modelo foi desenvolvida no software SketchUp 2017 (através do plugin Euclid, versão 0.9.3). Posteriormente, diversos dados foram inseridos por meio do EnergyPlus, versão 8.7. A cidade selecionada para inserir o modelo de simulação foi Porto Alegre, Zona bioclimática 3. Este modelo foi definido através de duas zonas térmicas: a primeira caracteriza-se por uma geometria de 5 m x 5 m x 3 m e a segunda, com 0,15 m de profundidade, caracteriza-se por uma parede Trombe orientada ao norte (Figura 2 e Figura 3).

Fonte: Os autores

A esquadria da parede Trombe possui dimensões de 4,50 x 2,60 metros, com uma abertura inferior do tipo maxim-ar e uma abertura superior do tipo de tombar, ambas com altura de 0,37 metros. Internamente, na parede acumuladora e na fachada sul, existem três aberturas do tipo basculante horizontal com dimensões iguais a 4,44 x 0,37 metros (**Erro! Autoreferência de indicador não válida.**). A esquadria da parede Trombe é de alumínio pintada de branco e é formada por duas lâminas de vidro claro de 3 mm espaçadas por 13 mm de ar. As demais aberturas possuem vidro claro simples de 3 mm.

Fonte: Os autores

A parede acumuladora possui 43 cm de espessura, é formada por duas camadas de tijolos maciços (com 19 cm de espessura) espaçadas em 1 cm e é revestida com 2 cm de argamassa. A face interna é pintada de branco e a externa é pintada de preto. As demais paredes possuem 13 cm de espessura, são formadas por uma camada de tijolos maciços de 9 cm de espessura, revestida com 2 cm de argamassa e pintada de branco em ambos os lados. A cobertura consiste em uma laje de concreto e o contrapiso é de concreto, revestido com piso cerâmico. As propriedades térmicas dos materiais inseridas no *EnergyPlus* estão detalhadas na Tabela 1. Para as paredes, foi calculada a

espessura e a densidade equivalentes dos tijolos conforme a metodologia de Ordenes et al. (2003). As cargas térmicas originárias da iluminação, equipamentos e ocupação não foram consideradas.

Material	e (m)	λ (W/m.K)	ρ (kg/m³)	c (J/kg.K)	a térmica	a solar e visível
Alumínio	0,002	230,00	2700	880	0,90	0,20
Argamassa	0,01 e 0,02	1,15	2000	1000	0,90	0,20 (branca)
						0,97 (preta)
Piso cerâmico	0,01	1,10	2000	1005	0,90	0,30
Concreto	0,10	1,75	2300	1000		
Madeira (porta)	0,025	0,15	600	1340	0,9	0,7
Solo	0,40	1,00	1200	1200		
Tijolo equivalente 9 cm	0,087	0,90	1539	920		
Tijolo equivalente 19 cm	0,1806	0,90	1585	920		

Tabela 1 – Propriedades dos materiais: espessura (e), condutividade (λ), densidade (ρ), calor específico (c) e absortância (a) térmica, solar e visível

Fonte: Adaptado de ABNT (2005) e Costa (2017)

O arquivo climático utilizado foi o "BRA_RS_Porto.Alegre.869880_INMET.epw" obtido de LabEEE (2017). As temperaturas do solo (à 50 cm de profundidade) também foram obtidas deste arquivo. As simulações foram realizadas para o ano inteiro.

Como dados de saída, foram solicitadas as temperaturas médias mensais, as temperaturas médias horárias (para a análise do solstício de verão e de inverno), as temperaturas superficiais internas e externas da parede acumuladora e a condução de calor através da mesma parede.

Para simular o modelo com o AirflowNetwork, foram levados em consideração os coeficientes de rugosidade recomendados por INMETRO (2012). A ventilação foi mantida constante o tempo todo. Para o modelo simulado com ZoneThermalChimney, foram informadas as áreas de entrada e de saída do ar, o comprimento da parede absorvedora, e o coeficiente de 0,8 (padrão do EnergyPlus).

4 ANÁLISE DOS RESULTADOS

Os gráficos apresentados a seguir mostram a variação da temperatura do ar ao longo do ano para os dois modelos simulados (com AirflowNetwork – AFN e com ZoneThermalChimney - TC), tanto para o interior do ambiente (AMB) quanto para o interior da chaminé (CHA). Observa-se na Figura 5 que as curvas dos dois modelos estão muito próximas. Existe apenas um pequeno aumento da temperatura do interior do ambiente quando simulado com o uso do objeto ZoneThermalChimney. A diferença, em média, da temperatura entre o modelo com AirflowNetwork e com o ZoneThermalChimney é de apenas 0,39°C. No caso das temperaturas no interior da chaminé, essa diferença é ainda menor (0,34°C).

A Tal fato ocorre nos dois modelos simulados.

Figura 6 apresenta a relação entre a temperatura interna do ambiente (A) e da chaminé (B) com as horas do dia de solstício de verão para ambos os modelos simulados. Ainda, é mostrada a variação horária das temperaturas superficiais internas e externas da parede acumuladora e a quantidade de calor por condução transferido através desta parede (C). Valores positivos de calor por condução indicam que o fluxo se direciona para o interior da zona térmica (U.S. DEPARTMENT OF ENERGY, 2016).

Conforme a Tal fato ocorre nos dois modelos simulados.

Figura 6-C, no modelo com o AirflowNetwork, em função das temperaturas superficiais externas mais elevadas, ocorrem as maiores trocas térmicas por condução. Sendo assim, entre1h e 11h e entre 19h e 24h, este ambiente interno recebe mais calor através de condução do que o ambiente do modelo com o ZoneThermalChimney. Entre 11h e 19h, contudo, ele perde menos calor. Ainda assim, as temperaturas internas são, em grande parte do dia, inferiores às temperaturas do modelo com o ZoneThermalChimney. Isto indica que uma maior quantidade de calor está sendo transferida do interior do ambiente para a chaminé através da ventilação simulada com o AirflowNetwork, fato que pode ser observado na Tal fato ocorre nos dois modelos simulados.

Figura 6-B. Como consequência, o calor oriundo do ambiente interno contribui

Fonte: Os autores

para o aquecimento da superfície externa da parede acumuladora.

Com relação à condução de calor, pode-se perceber que, entre 6h e 22h, a temperatura superficial externa da parede está maior do que a temperatura superficial interna, o que faz com que o calor seja conduzido no sentido exterior-interior. Porém, em função da massa térmica da parede, esse calor não é transferido para o interior imediatamente, mas sim a partir das 19h. Tal fato ocorre nos dois modelos simulados.

Fonte: Os autores

A, onde pode-se perceber que as trocas de calor por condução na parede são sempre positivas, ou seja, o calor segue em direção ao interior do ambiente (**Erro! Autoreferência de indicador não válida.**-C). Isto ocorre porque, em grande parte do tempo, a temperatura superficial externa é maior do que a temperatura superficial interna em ambos os modelos simulados.

Na Erro! Autoreferência de indicador não válida.-C observa-se também o efeito da massa térmica, já que a temperatura superficial externa da parede é maior entre 1h e 7h e entre 11h e 21h. Porém, os picos de calor transferido por condução aparecem entre 6h e 16h e a partir das 19h.

Ademais, ressalta-se que entre 1h e 5h a maior condução de calor ocorre no modelo com o ZoneThermalChimney. Em seguida, a situação se inverte e a parede do modelo com o AirflowNetwork apresenta maior condução de calor. Ainda assim, as temperaturas internas do ambiente com o AirflowNetwork são menores (Figura 7-A), o que novamente demonstra que mais calor está sendo removido e enviado para o interior da chaminé através da ventilação com o AirflowNetwork (Figura 7-B).

Como resultado deste estudo, foi constatado que não há diferenças significativas nas temperaturas médias horárias obtidas para os dois modelos simulados, diferenças essas que ficaram em torno de 0,37°C. Este resultado

demonstra que ambos os recursos do *EnergyPlus* podem ser utilizados para simular os efeitos da movimentação do ar em uma parede Trombe.

Figura 7 apresenta os resultados para o solstício de inverno, onde pode-se perceber que as trocas de calor por condução na parede são sempre positivas, ou seja, o calor segue em direção ao interior do ambiente (**Erro! Autoreferência de indicador não válida.**-C). Isto ocorre porque, em grande parte do tempo, a temperatura superficial externa é maior do que a temperatura superficial interna em ambos os modelos simulados.

Na **Erro! Autoreferência de indicador não válida.**-C observa-se também o efeito da massa térmica, já que a temperatura superficial externa da parede é maior entre 1h e 7h e entre 11h e 21h. Porém, os picos de calor transferido por condução aparecem entre 6h e 16h e a partir das 19h.

Ademais, ressalta-se que entre 1h e 5h a maior condução de calor ocorre no modelo com o ZoneThermalChimney. Em seguida, a situação se inverte e a parede do modelo com o AirflowNetwork apresenta maior condução de calor. Ainda assim, as temperaturas internas do ambiente com o AirflowNetwork são menores (Figura 7-A), o que novamente demonstra que mais calor está sendo removido e enviado para o interior da chaminé através da ventilação com o AirflowNetwork (Figura 7-B).

Como resultado deste estudo, foi constatado que não há diferenças significativas nas temperaturas médias horárias obtidas para os dois modelos simulados, diferenças essas que ficaram em torno de 0,37°C. Este resultado demonstra que ambos os recursos do *EnergyPlus* podem ser utilizados para simular os efeitos da movimentação do ar em uma parede Trombe.

Figura 7 – Resultados para o solstício de inverno

Fonte: Os autores

5. CONCLUSÕES

Os resultados encontrados indicam que ambas as formas estudadas podem ser utilizadas para simular uma parede Trombe configurada para o resfriamento. A decisão entre uma e outra deverá ser feita conforme o objetivo da simulação. Caso deseja-se simular em conjunto com a parede Trombe outros sistemas de ventilação (tal como uma ventilação cruzada através de janelas comuns), recomenda-se utilizar o AirflowNetwork. Porém, se for necessária apenas a simulação da ventilação causada pela parede Trombe, o uso do ZoneThermalChimney irá facilitar a montagem do modelo em decorrência do menor número de parâmetros de entrada.

REFERÊNCIAS

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 15220**: Desempenho Térmico de Edificações – Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro, 2005.

CAVALCANTI, F. S. **Paredes Trombe no Brasil:** Análise do potencial de utilização para aquecimento e refrigeração. 2013. Tese (Doutorado em Arquitetura) – Faculdade de Arquitetura, Universidade de São Paulo. São Carlos, 2013, 144 f.

COSTA, V. A. C. da. **Trocas de calor entre edificações térreas e o solo e sua modelagem no pré-processador Slab**. 2017. Dissertação (Mestrado em Arquitetura e Urbanismo) - Instituto de Arquitetura e Urbanismo, Universidade de São Paulo. São Carlos, 2017, 237 p.

GU, L. **Airflow Network Modeling in EnergyPlus.** 10th International Building Performance Simulation Association Conference and Exhibition. Pequim, setembro de 2007.

INMETRO - Instituto Nacional de Metrologia, Normalização e Qualidade Industrial. Portaria nº18, de 16 de janeiro de 2012. **Regulamento Técnico da Qualidade do Nível de Eficiência Energética Edificações Residenciais**. Brasília, DF, 2012. LABEEE – Laboratório de Eficiência Energética em Edificações. **Arquivos climáticos INMET 2016.** Disponível em: http://www.labeee.ufsc.br/downloads/arquivos-climaticos/inmet2016>. Acesso em 26 mar. 2018.

LAMBERTS, R.; DUTRA, L.; PEREIRA, F. O. R. **Eficiência Energética na Arquitetura**. 3ª Edição. Rio de Janeiro: Eletrobrás / PROCEL, 2014, 382 p.

ORDENES M., et al. **Metodologia utilizada na elaboração da biblioteca de materiais e componentes construtivos brasileiros para simulações no visualdoe-3.1**. Laboratório de Eficiência Energética em Edificações, Núcleo de Pesquisa em Construção, Departamento de Engenharia Civil. Universidade Federal de Santa Catarina, Florianópolis, 2003.

STAZI, F.; MASTRUCCI, A.; PERNA, C. de. The behaviour of solar walls in residential buildings with different insulation levels: An experimental and numerical study. **Energy And Buildings**, v. 47, 2012, 217-229.

U.S. Department of Energy. **Input and Output Reference**. Version 8.7, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, USA, 2016.