ESTUDO DE VALORES DE REFERÊNCIA PARA OS INDICADORES DO PBQP-H VOLTADOS À SUSTENTABILIDADE DE CANTEIROS DE OBRA¹

COSTA, D. B., Universidade Federal da Bahia, dayanabcosta@ufba.br; ALVARES, J.S, Universidade Federal da Bahia (UFBA), alvares.juliana@hotmail.com; SILVA, M. B. Universidade Federal da Bahia, marcosbfs96@gmail.com; SANTOS, V. A. Universidade Federal da Bahia, v1.andrade@hotmail.com

ABSTRACT

The interference caused by construction sites activities in the natural environment causes significant impacts on local and global scale. In order to minimize these negative impacts, the knowledge of its causes is indispensable. For this reason, the construction sector has been using sustainability indicators for monitoring site environmental conditions. In this context, in 2012, the Brazilian Habitat Quality and Productivity Program (PBQP-H) incorporated six indicators focused on the construction site sustainability. However, the lack of reference values for these indicators, in order to guide the management of environmental aspects related to water and energy consumption and waste generation on construction sites, is still a limitation to the proper use of them. Therefore, the present work aims to stipulate reference ranges for these PBQP-H indicators, from the development of a database and analysis of the values collected in existing constructions. The study was conducted from three main steps: Sample selection; Data collection and database assembly; and Reference ranges definition. This main study contribution is a better understanding of the construction sites behavior according to the mentioned environmental aspects (related to the PBQP-H indicators), in a way to guide the construction sector in the use of such parameters.

Keywords: Construction site environment impacts. Sustainability indicators. Brazilian Habitat Quality and Productivity Program (PBQP-H)

1 INTRODUÇÃO

As interferências das atividades realizadas no canteiro de obras com os meios físico, biótico e antrópico causam impactos negativos, incluindo incômodos à vizinhança, poluição, impactos no local da obra, e extração e consumo de recursos naturais (CARDOSO; ARAUJO, 2007; THOMAS; COSTA, 2017). Essas interferências possuem escala local, os trabalhadores, vizinhança e ecossistemas do terreno e entorno, assim como escala global, a sociedade, principalmente no que se refere à poluição e extração de recursos (CARDOSO; ARAUJO, 2007).

Segundo Cardoso, Araujo e Degani (2006), as atividades desenvolvidas durante o período da construção que geram impactos negativos possuem elementos que são capazes de interagir com o ambiente e sobre os quais a equipe de obra pode agir e controlar, os denominados aspectos ambientais. Dessa forma, para a minimização dos impactos negativos é necessário inicialmente conhecer as suas causas, a partir da investigação da

¹ COSTA, D. B.; ALVARES, J.S; SILVA, M. B.; SANTOS, V. A. Estudo de valores de referência para os indicadores do PBQP-H voltados à sustentabilidade de canteiros de obra. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 17., 2018, Foz do Iguaçu. **Anais...** Porto Alegre: ANTAC, 2018.

ocorrência e intensidade dos aspectos ambientais e atividades relacionadas (CARDOSO; ARAUJO; DEGANI, 2006).

Dessa maneira, Tam et al. (2006) ressaltam a importância do uso de indicadores de sustentabilidade na gestão ambiental de canteiros de obras, visando o monitoramento de possíveis aspectos ambientais degradantes. Segundo Silva (2007), indicadores de sustentabilidade podem ser definidos como instrumentos/ferramentas que permitem a descrição de impactos ambientais, econômicos e sociais (pelo monitoramento dos aspectos), causados por empreendimentos em suas diferentes fases do ciclo de vida.

Associado a tal contexto, o Programa Brasileiro da Qualidade e Produtividade do Habitat (PBQP-H), a partir de 2012, implementou e passou a exigir das construtoras certificadas que atuam no subsetor de obras de edificações, o monitoramento de seis indicadores voltados à sustentabilidade em canteiros. Tais indicadores estão relacionados ao consumo de água, consumo energia e geração de resíduos, medidos ao longo e ao final das obras (MINISTÉRIO DAS CIDADES, 2017).

No entanto, observa-se a ausência de valores de referência a cerca destes indicadores, de forma a contribuir com informações relevantes que possam ser utilizadas pelas empresas construtoras para apoiar na gestão sustentável dos seus canteiros de obra.


Nesse sentido, em vista à grande representatividade do PBQP-H no setor brasileiro da construção civil e à importância do monitoramento de tais aspectos ambientais relacionados aos referidos indicadores, o presente trabalho tem por objetivo principal estipular faixas de referência para os seis indicadores do PBQP-H voltados à sustentabilidade de canteiro de obras, a partir do desenvolvimento de uma base de dados e análise de valores coletados em obras existentes.

2 METODOLOGIA

O estudo em questão está associado a uma pesquisa de campo para levantamento de dados coletados em obras de construção civil, relacionados aos valores dos seis indicadores de sustentabilidade do PBQP-H para elaboração das faixas de referência dos indicadores.

Para tal, o trabalho foi desenvolvido a partir de três principais etapas: (1) Seleção da amostra; (2) Levantamento dos dados e montagem da base de dados; e (3) Definição das faixas de referência, conforme apresentado na Figura 1.

Figura 1 – Delineamento das etapas e atividades do estudo

Fonte: Os Autores

Foram coletados dados de 14 obras da Região Metropolitana de Salvador (Quadro 1), com diferentes tipologias construtivas, quais sejam, 4 obras de Parede de Concreto, 5 obras de Alvenaria Estrutural e 5 obras de Estrutura de Concreto Armado, sendo destas 10 obras de edificações residenciais e 4 comerciais. Este artigo, devido a limitações de palavras, limita-se a apresentar apenas valores de referência em relação aos indicadores coletas. A associação destes valores de referência com as práticas adotadas pelas obras encontra-se em Oliveira (2018).

3 RESULTADOS

Nesta seção serão apresentados os resultados obtidos, relativos às faixas de valores de referência para os conjuntos de indicadores medidos ao longo e ao final da obra, considerando a amostra de 14 obras.

3.1 Indicadores medidos ao longo da obra

O Quadro 2 apresenta as faixas de referência criadas para os três indicadores medidos ao longo da obra, incluindo valor mínimo, máximo, mediana e média. Estes valores foram agrupados e analisados por intervalos de 10% de Avanço Físico (AF), possibilitando uma melhor comparação entre os indicadores de diferentes obras.

Quadro 1 – Caracterização das obras estudadas

Quadro 1 – Caracterização das obras estudadas							
Obra	Tipo de edificação	Padrão	Duração (meses)	Efetivo Médio (Min - Max)	Área construída (m²)	Tipologia da estrutura	Tipologia de vedação
PAI	Comercial - Empresarial	Alto	10	30 - 62	2699.7	Concreto armado moldado no local	Gesso acartonado
PA2	Comercial - Clínica	Alto	8	20 - 107	2533.41	Concreto armado moldado no local	Bloco cerâmico e Gesso acartonado
PA3	Comercial - Clínica	Alto	11	17 - 90	2798.94	Concreto armado moldado no local	Bloco cerâmico e Gesso acartonado
PB1	Residencial - prédio	Alto	24	4 - 391	27773.66	Concreto armado moldado no local	Bloco cerâmico
PC1	Residencial - Condomínio de prédios	MCMV	24	30 - 777	93528.4	Parede de concreto	Parede de concreto
PD1	Residencial - Condomínio de prédios	MCMV	10	97 - 154	31540	Parede de concreto	Parede de concreto
PD2	Residencial - Condomínio de casas	MCMV	19	5 - 182	16253.38	Concreto armado moldado no local	Alvenaria estrutural armada
PD3	Residencial - Condomínio de casas	MCMV	24	6 - 179	18492,00 m²	Parede de concreto	Parede de concreto
PE2	Residencial - Condomínio de prédios	MCMV	18	52 - 216	38826.58	Parede de concreto	Parede de concreto
PE3	Residencial - Condomínio de prédios	MCMV	22	50 - 276	31093.87	Concreto armado moldado no local	Alvenaria estrutural armada
PE4	Residencial - Condomínio de prédios	MCMV	20	65 - 301	43332.38	Concreto armado moldado no local	Alvenaria estrutural armada
PE5	Residencial - Condomínio de prédios	MCMV	20	64 - 237	23173.36	Concreto armado moldado no local	Alvenaria estrutural armada
PE6	Residencial - Condomínio de prédios	MCMV	17	21 - 96	22174.17	Concreto armado moldado no local	Alvenaria estrutural armada
PF1	Comercial - Clínica- Hospital	Alto padrão	27	63 - 168	5600	Concreto armado moldado no local	Bloco de concreto e Gesso acartonado

Fonte: Os autores

Quadro 2 – Faixa de referência para indicadores ao longo da obra

Indicador	Intervalo de AF	Valores de referência	Amostra	Desvio Padrão (DP)
Consumo de Água (CA) ao longo da obra (m³ de água/efetivo	0%-10%	0,45 2,37 2,71 4,50	10	1,395
	10%-20%	0,20 1,43 1,55 4,42	12	1,219
	20%-30%	0,05 1,05 1,40 3,12	11	1,076
	30%-40%	0,08 <mark>0,94</mark> 1,37 3,58	11	1,131
	40%-50%	0,00 1,24 1,46 4,03	11	1,210
	50%-60%	0,28 1,22 1,58 2,37	9	0,800
médio)	60%-70%	0,19 2,01 2,35 5,63	9	1,657
	70%-80%	0,14 1,51 1,53 3,23	8	1,112
	80%-90%	0,13 1,86 1,93 3,28	9	0,971
	90%-100%	0,77 1,61 1,76 2,44	5	0,678
	0%-10%	0,00 8,18 10,89 33,72	8	11,151
	10%-20%	1,99 16,94 19,88 38,58	12	14,000
	20%-30%	4,56 19,24 23,69 49,43	13	16,342
Consumo de	30%-40%	5,92 16,26 17,46 22,60	11	5,589
Energia (CE) ao longo da	40%-50%	7,98 18,04 19,84 38,14	11	9,759
obra (kWh/efetivo	50%-60%	6,27 17,40 19,26 34,34	12	9,755
médio)	60%-70%	5,50 13,08 13,92 21,25	7	5,196
	70%-80%	5,42 16,79 20,86 43,00	9	11,358
	80%-90%	2,88 19,63 21,21 34,60	9	9,818
	90%-100%	1,88 22,58 25,59 43,64	5	15,710
Geração de Resíduos (GR) ao Iongo da	0%-10%	0,00 0,05 0,25 1,06	9	0,374
	10%-20%	0,05 0,22 0,24 0,62	8	0,192
	20%-30%	0,00 0,55 0,66 1,66	12	0,559
obra (m³ de resíduos/efeti	30%-40%	0,00 0,57 0,57 1,17	12	0,370
vo médio)	40%-50%	0,00 0,33 0,63 1,70	10	0,565

	50%-60%	0,18 0,70 0,94 3,00	11	0,766
	60%-70%	0,19 0,71 1,01 2,36	9	0,699
	70%-80%	0,49 0,79 0,83 1,19	7	0,227
	80%-90%	0,39 1,18 1,26 1,94	9	0,515
	90%-100%	0,31 0,83 1,07 2,31	4	0,875

Legenda:

Mínimo Mediana Média Máximo

Fonte: Os autores

Conforme apresentado no Quadro 2, em relação às faixas de referência calculadas para o indicador de CA, os resultados mais frequentes ao longo da obra (medianas) variaram de 0,94 a 2,71 m³ de água/ efetivo médio, sendo os maiores consumos no início da obra (0-10% de AF) e menores entre 30-40% de avanço físico da obra. Acredita-se que os valores máximos obtidos entre 0-10% de AF possam estar relacionados aos serviços de terraplenagem, que consomem significativa quantidade de água, e à pequena quantidade de pessoas no canteiro no início da obra.

Quanto aos indicadores de CE e GR, pode-se observar que os valores mais frequentes variaram de 8,18 a 25,59 KWh de energia / efetivo médio, com os maiores consumos no final da obra (90-100% de AF) e menores no início da obra (0-10% de AF). Para o GR, os resultados mais frequentes variaram de 0,05 a 1,26 (m3 de resíduo / efetivo médio), sendo as maiores gerações no final da obra (80-90% de AF) e menores no início da obra (0-10% de AF). Para estes dois indicadores, não foram identificadas causas concretas para os picos em tais estágios das obras.

Com relação à análise desses três indicadores para as tipologias construtivas mais representativas da amostra, foram identificados maiores consumos de energia e menores consumo de água para as obras de estrutura em concreto armado com alvenaria mista de bloco cerâmico, em comparação às obras de alvenaria estrutural e parede de concreto, e ainda uma menor Geração de Resíduos em sistemas de paredes de concreto.

Quadro 2 – Faixa de referência para indicadores ao longo da obra por tipologia

Tip ologia s	Estrutura Coi	nvencional e A	lvenaria Bloco	Parede de concreto			Alvenaria Estrutural		
	Consumo	Consumo de	Geração de	Consumo	Consumo	Geração	Consumo	Consumo	Geração
	de Água	Energia	Resíduo	de Água	de Energia	de Resíduo	de Água	de Energia	de Resíduo
Inid ca dores	(m3/EM)	(kWh/EM)	(kg/EM)	(m3/EM)	(kWh/EM)	(kg/EM)	(m3/EM)	(kWh/EM)	(kg/EM)
N° de dados	29	26	25	61	56	48	75	69	60
Min	0.17	12.03	0.14	0.02	0.24	0.02	0.01	0.83	0.05
Max	2.86	37.28	1.78	9.29	38.56	2.07	6.88	33.72	3.83
Mediana	1.16	24.94	0.71	1.81	14.19	0.57	1.79	13.85	1.14
Média	1.23	24.39	0.71	2.75	16.37	0.95	2.06	13.28	1.38
Desvio padrâ	0.70	5.59	0.43	2.45	11.30	1.41	1.64	7.25	0.94

Fonte: Os autores

Estes resultados ainda não mostraram um padrão devido ao pequeno tamanho da amostra, mas acredita-se na tendência de que à medida em

que o sistema se torna mais padronizado e industrializado, como sistema de parede de concreto, os consumos de energia e geração de resíduos tendem a decrescer.

3.2 Indicadores medidos ao final da obra

O Quadro 3 apresenta as faixas de referência criadas para os três indicadores medidos ao final da obra.

Quadro 3 – Faixa de referência para indicadores ao final da obra

Indicador	Faixa de Valores de referência	Amostra	Desvio Padrão (DP)	
Consumo de Água (CA) ao final da obra (m³ de água/m² de área construída)	0,02 0,23 0,27 0,42 Min Mediana Méd Máx.	9	0,126	
Consumo de Energia (CE) ao final da obra (KWh de energia/m² de área construída)	0,86 2,36 3,10 5,54 Min Méd Mediana Máx.	9	2,057	
Geração de Resíduos (GR) ao final da obra (m³ de resíduos/m² de área construída)	0,04 0,10 0,11 0,20 Min Mediana Méd Máx.	7	0,055	

Fonte: Os autores

Como observado no Quadro 3, em relação aos indicadores medidos ao final das obras, a faixa de referência calculada para os valores de GR apresentou maior significância, com menor DP (0,55), maior simetria (valores da mediana e média aproximadamente iguais) e também menor amplitude de variação entre as obras analisadas. Em seguida, pode-se destacar a faixa de referência dos valores de CA, com dispersão não tão acentuada (DP de 0,126), distribuição razoavelmente simétrica e amplitude de valores significativa. Por fim, a faixa mais heterogênea e dispersa entre as três foi a do indicador de CE, com distribuição razoavelmente assimétrica, DP de 2,057 e amplitude geral acentuada.

4 CONCLUSÕES

O presente estudo visou realizar um levantamento, classificação e análise de dados referentes aos seis indicadores do PBQP-H voltados à sustentabilidade de canteiro de obras, coletados em 14 obras. assim, esse trabalho traz como principal contribuição o melhor entendimento, mesmo que ainda de maneira inicial, do comportamento de canteiros de obras quanto aos aspectos ambientais de consumo de água, consumo de energia e geração de resíduos (ao logo e ao final das obras). Associado ao mesmo, tem-se a indicação inicial do comportamento de faixas de valores de referência para os seis referidos indicadores, norteando a utilização desses parâmetros pelo setor da construção civil.

Quanto às principais limitações do trabalho, podem ser levantados os tamanhos e abrangência ainda restritos da amostra coletada, sendo necessário englobar outras regiões do Brasil e outras tipologias construtivas analisadas. Além disso, destaca-se a falta de análises mais consistentes dos motivos dos resultados encontrados, principalmente dificultadas pelo pequeno tamanho das amostras atuais.

Como futuros trabalhos já em andamento, estão sendo realizados novos estudos para a ampliação da base de dados, bem como novas análises visando relacionar os valores dos indicadores levantados com as boas práticas adotadas nos canteiros, relacionadas a consumo de água, energia e geração de resíduos.

REFERÊNCIAS

CARDOSO, F. F.; ARAUJO, V. M. **Levantamento do estado da arte: Canteiro de obras (Documento 26)**. Habitação mais sustentável. Projeto Tecnologias para construção habitacional mais sustentável, Pojeto Finep 2386/04, São Paulo, 2007.

CARDOSO, F. F.; ARAUJO, V. M.; DEGANI, C. M. Impactos ambientais dos canteiros de obras: uma preocupação que vai além dos resíduos. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO (ENTAC), 6., 2006, Florianópolis. **Anais...** Florianópolis: UFSC/ANTAC, 2006.

MINISTÉRIO DAS CIDADES. **PBQP-Habitat – Sistema de Avaliação da Conformidade de Empresas de Serviços e Obras da Construção Civil (SiAC)**. Brasília: Secretaria Nacional de Habitação, Programa Brasileiro da Qualidade e Produtividade do Habitat - PBQP-H, 2017.

OLIVEIRA, Y. A. B. Indicadores de sustentabilidade do Programa Brasileiro de Qualidade e Produtividade no Habitat. 2018. Monografia (Trabalho de Conclusão do Curso) – Escola Politécnica, Universidade Federal da Bahia, Salvador, 2018.

SILVA, V. G. Indicadores de sustentabilidade de edifícios: estado da arte e desafios para desenvolvimento no Brasil. **Ambiente Construído**, Porto Alegre, v. 7, n. 1, p. 47-66, 2007.

TAM, V. W. Y.; TAM, C. M.; ZENG, S. X.; CHAN, K. K. Environmental performance measurement indicators in construction. **Building and Environment**, v. 41, p. 164-173, 2006.

THOMAS, N. I. R.; COSTA, D. B. Adoption of environmental practices on construction sites. **Ambiente Construído**, Porto Alegre, v. 17, n. 4, p. 9-24, 2017.