CO2 capture of rendering mortars: Scenarios analysis
DOI:
https://doi.org/10.46421/entac.v19i1.1974Keywords:
Cement materials, CO2 sequestration, Sustainability, Compensatory measuresAbstract
The CO2 capture due to natural carbonation in rendering mortars with different hydrated lime contents is evaluated, considering application thicknesses from 10 to 80 mm. Data about carbonation depth over time from samples in a protected outside environment were used in the modeling. The evaluation of the fixed carbon content was by thermogravimetry. The higher the lime content, the lower the diffusion speed and the higher the fixed CO2 content. Coating thicknesses greater than 20 mm require more than 3 months to finish the carbon fixation capacity.
References
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto - Procedimento. Rio de Janeiro: [s. n.], 2014.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13749: Revestimento de paredes e tetos de argamassas inorgânicas - Especificação. Rio de Janeiro: [s. n.], 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575: Edificações habitacionais - Desempenho. Rio de Janeiro: [s. n.], 2021.
BARBOSA, M. C. Efeito da proteção superficial do tipo pintura na captura de CO2 por carbonatação em argamassas de revestimento. 2020. - Universidade Tecnológica Federal do Paraná, [s. l.], 2020.
CETESB; BID. Estudo de baixo carbono para a indústria de cimento no estado de São Paulo de 2014 a 2030 (K. R. G. Punhagui et al., Org.). São Paulo: CETESB, 2018. Disponível em: http://www.cetesb.sp.gov.br.
CHEVER, L.; PAVÍA, S.; HOWARD, R. Physical properties of magnesian lime mortars. Materials and Structures, [s. l.], v. 43, n. 1–2, p. 283–296, 2010. Disponível em: https://link.springer.com/10.1617/s11527-009-9488-9.
DELABONA, F. J.; GAVA, G. P.; RUFATTO, M. Avaliação do potencial de captura de CO2 em argamassas de revestimento devido à carbonatação natural. In: - 6o ENCONTRO ANUAL DE INICIAÇÃO CIENTÍFICA E INOV, 2020, Cascavel. 6o EAICTI. Cascavel: Unioeste, 2020.
ERGENÇ, D.; FORT, R. Accelerating carbonation in lime-based mortar in high CO2 environments. Construction and Building Materials, [s. l.], v. 188, p. 314–325, 2018. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0950061818320671.
FONTOLAN, B. L. Captura de CO2 devido a carbonatação em argamassas com agregado de resíduo de construção e demolição por meio da análise térmica. 2021. - Universidade Estadual do Oeste do Paraná, Cascavel, 2021.
FONTOLAN, B. L.; GAVA, G. P.; SILVA, T. B. Contribuição ao sequestro de CO2 devido a carbonatação natural de argamassas com agregado de resíduo de construção e demolição. In: 6o ENCONTRO ANUAL DE INICIAÇÃO CIENTÍFICA E INOVAÇ, 2020, Cascavel. 6o EAICTI. Cascavel: Unioeste, 2020.
FONTOLA, B. L.; SILVA, T. B.; GAVA, G. P.; RIGO, E.; POSSAN, E. CO2 uptake in rendering mortars considering natural carbonation. [No prelo].
FUKUI, E. et al. CO2 liberado na produção de argamassas. In: 2013, Fortaleza. X Simpósio Brasileiro de Tecnologia das Argamassa. Fortaleza: [s. n.], 2013.
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [S. l.]: Cambridge University Press, 2021.
JOHN, V. M.; PUNHAGUI, K. R. G.; CINCOTTO, M. A. Produção de cal. Economia de Baixo Carbono - Impactos de Novos Marcos Regulatórios e Tecnologias Sobre a Economia Brasileira. Ribeirão Preto: Funpec, 2014.
KALIYAVARADHAN, S. K.; LING, T. C. Potential of CO2 sequestration through construction and demolition (C&D) waste - An overview. [S. l.]: Elsevier Ltd, 2017.
KANG, S.-H.; KWON, Y.-H.; MOON, J. Quantitative Analysis of CO2 Uptake and Mechanical Properties of Air Lime-Based Materials. Energies, [s. l.], v. 12, n. 15, p. 2903, 2019. Disponível em: https://www.mdpi.com/1996-1073/12/15/2903.
MAZURANA, L. et al. Determination of Co2 capture in rendering mortars produced with recycled construction and demolition waste by thermogravimetry. Journal of Thermal Analysis and Calorimetry, [s. l.], 2021.
MO, L.; PANESAR, D. K. Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO. Cement and Concrete Composites, [s. l.], v. 43, p. 69–77, 2013. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0958946513001170.
PHAM, S. T. Experimental Investigation and Modelling of Carbonation Process in Cement Materials. The Open Civil Engineering Journal, [s. l.], v. 7, n. 1, p. 116–126, 2013. Disponível em: https://opencivilengineeringjournal.com/VOLUME/7/PAGE/116/.
POSSAN, E. Captura de CO2 em materiais cimentícios. Concreto & Construção, [s. l.], v. 1, p. 60–66, 2019.
RILEM. CPC-18 Measurement of hardened concrete carbonation depth. Materials and Structures, [s. l.], v. 21, n. 6, p. 453–455, 1988. Disponível em: https://link.springer.com/article/10.1007/BF02472327. Acesso at: 29 Jun. 2021.
SCRIVENER, K.; SNELLINGS, R.; LOTHENBACH, B. A Practical Guide to Microstructural Analysis of Cementitious Materials. New York: CRC Press, 2016.
SNIC. Produção nacional de cimento por regiões e estados. [S. l.], 2020. Disponível em: http://snic.org.br/numeros-industria.php.
TUUTTI, K. Corrosion of steel in concrete. Stockholm: [s. n.], 1982. Disponível em: http://www.cbi.se/viewNavMenu.do?menuID=317&oid=857.
UN. Transforming our world: the 2030 Agenda for Sustainable Development. [S. l.], 2015. Disponível em: Acesso at: 23 Jun. 2021.
WIJAYASUNDARA, M.; MENDIS, P.; NGO, T. Comparative assessment of the benefits associated with the absorption of CO 2 with the use of RCA in structural concrete. Journal of Cleaner Production, [s. l.], v. 158, p. 285–295, 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0959652617306923.
WORLD BUSINESS COUNCIL FOR SUSTAINABLE DEVELOPMENT (WBCSD). GNR Project: Reporting CO2. [S. l.], 2019. Disponível em: https://gccassociation.org/gnr/. Acesso at: 23 Jun. 2021.
YANG, K. H.; SEO, E. A.; TAE, S. H. Carbonation and CO2 uptake of concrete. Environmental Impact Assessment Review, [s. l.], v. 46, p. 43–52, 2014.