Thermoenergetic behavior of single-family building with the use of cool roofs:

Case study in the city of Recife/PE

Authors

DOI:

https://doi.org/10.46421/entac.v20i1.5982

Keywords:

Cool roofs, Thermoenergetic performance, Residential buildings

Abstract

This article aims to analyze the thermoenergetic impacts generated by the use of cold roofs in low-income single-family buildings in Recife/PE, Brazil. Computational models encompass scenarios involving the use of cold roofs (solar absorptance of 0.25), degraded cold roofs (solar absorptance of 0.42) and standard roofs (solar absorptance of 0.65), and consider variations in occupancy profile, user behavior, and roof system insulation. The results indicated that cold roofs with low insulation exhibit more efficient indicators regarding thermoenergetic behavior, impacting the improvement of thermal performance of the housing unit, as well as reductions in the flow of heat released by long-wave radiation and energy consumption. It is concluded that cold roofs are effective alternatives for single-family buildings situated in the climatic context of Recife/PE, Brazil.

Author Biographies

Matheus Mendonça Barbosa, Federal University of Santa Catarina

Civil Engineer from the Catholic University of Pernambuco (2021) and Master in Civil Engineering from the Federal University of Santa Catarina. He has experience in civil engineering, with an emphasis on thermo-energetic analysis of buildings, mainly working on the evaluation of building projects regarding thermal performance requirements according to ABNT NBR 15575, as well as construction materials and innovative systems (PBQP-H).

Deivis Luis Marinoski, Federal University of Santa Catarina

Civil Engineer graduated from UFSC (2002), holding a Master's degree (2005), a PhD (2010), and a Postdoctoral degree (2013). He was a substitute professor in the Department of Architecture and Urbanism (ARQ) at UFSC in 2011 and 2012. He has been a professor in the Department of Design and Graphic Expression (EGR) since 2013 and a professor in the Graduate Program in Civil Engineering (PPGEC) at UFSC since 2017. He served as the deputy head of the Department of Design and Graphic Expression (EGR) from August 2019 to March 2022. Currently, he holds the administrative position of faculty representative on the Undergraduate Program Board of the Department of Civil Engineering (ECV). He also collaborates on research projects developed by LabEEE (Energy Efficiency in Buildings Laboratory) and CB3E (Brazilian Center for Energy Efficiency in Buildings). He has experience in teaching, research, and extension activities in the field of civil construction, with an emphasis on the following topics: energy efficiency, heat transfer, thermal and optical properties of materials, environmental comfort, construction processes, building installations, sustainability, and technical drawing.

References

IEA, INTERNATIONAL ENERGY AGENCY. World Energy Balances, 2022. Disponível em: https://www.iea.org/data-and-statistics/data-product/world-energy-balances. Acesso em 05 jan. 2023.

LEI, J.; YANG, J.; YANG, E. Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. Applied Energy. v. 162, p. 207-217, 2016. ISSN 0306-2619. Disponível em: https://doi.org/10.1016/j.apenergy.2015.10.031.

SPROUL, J.; WAN, M. P.; MANDEL, B. H.; ROSENFELD, A. H. Economic comparison of white, green, and black flat roofs in the United States. Energy and Buildings. v. 71, p. 20-27. 2014. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2013.11.058.

RAWAT, M.; SINGH, R. N. A study on the comparative review of cool roof thermal performance in various regions. Energy and Built Environment. v. 3, p. 327-347. 2022. ISSN 2666-1233. Disponível em: https://doi.org/10.1016/j.enbenv.2021.03.001.

TESTA, J.; KRARTI, M. A review of benefits and limitations of static and switchable cool roof systems. Renewable and Sustainable Energy Reviews. v. 77, p. 451-460. 2017. ISSN 1364-0321. Disponível em: https://doi.org/10.1016/j.rser.2017.04.030.

COSTANZO, V.; EVOLA, G.; MARLETTA, L. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy and Buildings. v. 114, p. 247-255, 2016. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2015.04.053.

SEIFHASHEMI, M.; CAPRA, B. R.; MILLLER, W.; BELL J. The potential for cool roofs to improve the energy efficiency of single storey warehouse-type retail buildings in Australia: A simulation case study. Energy and Buildings. v. 158, p. 1393-1403, 2018. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2017.11.034.

AKBARI, H.; MATTHEWS, H.D. Global cooling updates: Reflective roofs and pavements. Energy and Buildings. v. 55, p. 2-6, 2012. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2012.02.055.

KOLOKOTRONI, M.; SHITTU, E.; SANTOS, T.; RAMOWSKI, L.; MOLLARD, A.; ROWE, K.; WILSON, E.; BRITO FILHO, J. P.; NOVIETO, D. Cool roofs: High tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries. Energy and Buildings. v. 176, p. 58-70. 2018. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2018.07.005.

STAVRAKAKIS, G.M.; ANDROUTSOPOULOS, A.V.; VYÖRYKKÄ, J. Experimental and numerical assessment of cool-roof impact on thermal and energy performance of a school building in Greece. Energy and Buildings. v. 130, p. 64-84. 2016. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2016.08.047.

PISELLI, C.; SAFFARI, M.; GRACIA, A.; PISELLO, A. L.; COTANA, F.; CABEZA L. F. Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems. Energy and Buildings. v. 151, p. 81-97, 2017. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2017.06.045.

SILVA, M. P.; MARINOSKI, D. L.; GÜTHS, S. Avaliação de telhados cerâmicos de alta refletância solar através de simulação termoenergética e análise econômica em uma residência unifamiliar. In: Anais do XVIII Encontro Nacional de Tecnologia do Ambiente Construído. Porto Alegre, Brasil, 2020.

SILVA, M.P.; MARINOSKI, D.L.; GÜTHS, S. Simulação termoenergética e análise econômica do uso de telhados de fibrocimento de alta refletância solar em uma residência unifamiliar. In: Anais do XVIII Encontro Nacional de Tecnologia do Ambiente Construído. Porto Alegre, Brasil, 2020.

TZEMPELIKOS, A.; LEE, S. Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost. Energies. 2021. Disponível em: https://doi.org/10.3390/en14227656.

DOE – UNITED STATES DEPARTMENT OF ENERGY. EnergyPlus: Version 22.2.0. Disponível em: https://energyplus.net/. Acesso em: 11 jan. 2023.

SANTOS, A.C.; LIMA, J.V.S.; J.R.G.; M.S.G.C. Uso do EnergyPlus em pesquisas brasileiras. XVII ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO – ENTAC 2018. Foz do Iguaçu, 2018.

NEW, J.; MILLER, W. A.; HUANG, YU (JOE); LEVINSON, R. Comparison of software models for energy savings from cool roofs. Energy and Buildings. v. 114, p. 130-135, 2016. ISSN 0378-7788. Disponível em: https://doi.org/10.1016/j.enbuild.2015.06.020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15.575: Edificações habitacionais – Desempenho. Parte 1-1: Base-padrão de arquivos climáticos para a avaliação do desempenho térmico por meio do procedimento de simulação computacional. NBR 15575-1-1. Rio de Janeiro, 2021.

_____. NBR 15.575: Edificações habitacionais – Desempenho. Parte 1: Requisitos gerais. NBR 15575-1. Rio de Janeiro, 2024.

XING, L. Estimations of undisturbed ground temperatures using numerical and analytical modeling. 2014. Tese (Doutorado), Oklahoma State University, Stillwater, 2014.

INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA (INMETRO). Portaria Nº 309, de 6 de setembro de 2022. Aprova as Instruções Normativas e os Requisitos de Avaliação da Conformidade para a Eficiência Energética das Edificações Comerciais, de Serviços e Públicas e Residenciais – Consolidado. 2022. Disponível em: http://www.inmetro.gov.br/LEGISLACAO/detalhe.asp?seq_classe=1&seq_ato=2989. Acesso em 25 mar. 2023.

_____. Condicionadores de ar: condicionadores-de-ar-indices-novos-IDRS_2023-08-02 v2. 2023. Disponível em: https://www.gov.br/inmetro/pt-br/assuntos/avaliacao-da-conformidade/programa-brasileiro-de-etiquetagem/tabelas-de-eficiencia-energetica/condicionadores-de-ar. Acesso em 09 set. 2023.

KAMIMURA, A.M.; RUPP, R.F.; FOSSATI, M.; LAMBERTS, R. Fatores de conversão de energia elétrica e térmica em energia primária e em emissões de dióxido de carbono a serem usados na etiquetagem de nível de eficiência energética de edificações. CB3E, 2020. Disponível em: http://www.pbeedifica.com.br/sites/default/files/Relatorio-atualizado-fatores_energia-primaria_CO2_28_11_2020.pdf. Acesso em 24 mar. 2023.

Published

2024-10-07

How to Cite

BARBOSA, Matheus Mendonça; LUIS MARINOSKI, Deivis. Thermoenergetic behavior of single-family building with the use of cool roofs:: Case study in the city of Recife/PE. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–16. DOI: 10.46421/entac.v20i1.5982. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5982. Acesso em: 23 nov. 2024.

Issue

Section

Conforto Ambiental e Eficiência Energética

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.