Utilization of Food Industry Waste for the Production of Sustainable Cementitious Materials

Authors

  • Maysa Lorena Figueiredo Martins Centro Federal de Educação Tecnológica de Minas Gerais
  • Marcio Mateus Pimenta Centro Federal de Educação Tecnológica de Minas Gerais
  • Augusto Cesar da Silva Bezerra Centro Federal de Educação Tecnológica de Minas Gerais

DOI:

https://doi.org/10.46421/entac.v20i1.6279

Keywords:

Portland Cement, diatomaceous, waste, filtration, silicon

Abstract

The potential of diatomaceous earth as a valuable waste material, originating from filtration processes, is due to its high silicon content and morphology favorable for chemical reactions. Its refined granulometry and amorphous structure indicate high reactivity. Thus, the application of this waste as a partial substitute for Portland cement was explored, aiming to obtain a material with mechanical properties, good durability, and lower environmental impacts associated with waste disposal and CO2 emissions. The mortar mix was prepared by replacing Portland cement with up to 25% diatomaceous waste. Compression strength and water absorption tests were performed on the specimens molded with the established mix, comparing their performance with that of pure Portland cement. The developed material was close to the normative limit for class 32 cements, being only 5% below the required threshold. This result demonstrates the enormous potential of using waste materials in the production of sustainable cementitious materials, reinforcing the technical feasibility and the promise of a greener and more innovative future for the construction industry.

Author Biographies

Maysa Lorena Figueiredo Martins, Centro Federal de Educação Tecnológica de Minas Gerais

Mestre em Engenharia Civil pelo Centro Federal de Educação Tecnológica de Minas Gerais 

Marcio Mateus Pimenta, Centro Federal de Educação Tecnológica de Minas Gerais

Coordenador de Laboratórios na instituição CEFET-MG, mestrando em Engenharia Civil na linha de pesquisa de Materiais de Construção Sustentáveis no CEFET-MG (2022 - atualmente) e membro do grupo de pesquisa do Laboratório de Materiais Inovadores Sustentáveis LAB-MIS (2022 - atualmente). Graduado em Engenharia Civil pela instituição UFTM (2017-2022) em Uberaba/MG, técnico em Edificações pela instituição CEFET MG campus IV em Araxá/MG (2013-2015).

Augusto Cesar da Silva Bezerra, Centro Federal de Educação Tecnológica de Minas Gerais

Possui graduação em Engenharia de Produção Civil pelo Centro Federal de Educação Tecnológica de Minas Gerais (2004), mestrado em Construção Civil pela Universidade Federal de Minas Gerais (2007) e doutorado em Engenharia Metalúrgica e de Minas pela Universidade Federal de Minas Gerais (2012). Atualmente é professor efetivo do Centro Federal de Educação Tecnológica de Minas Gerais e coordenador de programas profissionais da área de conhecimento Engenharias I da CAPES. Tem experiência na área de Engenharia Civil, com ênfase em Materiais e Componentes de Construção, atuando principalmente nos seguintes temas: sustentabilidade, aproveitamento de resíduos, aglomerantes de baixo carbono, materiais álcalis-ativados, cimento Portland, compósitos cimentícios, concreto e infraestrutura resiliente.

References

A. Ashraf, R. Ramamurthy, E.R. Rene, Wastewater treatment and resource recovery technologies in the brewery industry: Current trends and emerging practices, Sustain. Energy Technol. Assessments 47 (2021) 101432. https://doi.org/10.1016/J.SETA.2021.101432.

S.V. Bonato, D. Augusto de Jesus Pacheco, C. Schwengber ten Caten, D. Caro, The missing link of circularity in small breweries’ value chains: Unveiling strategies for waste management and biomass valorization, J. Clean. Prod. 336 (2022) 130275. https://doi.org/10.1016/J.JCLEPRO.2021.130275.

J.Y. Richard Liew, M.-X. Xiong, B.-L. Lai, Special considerations for high strength materials, Des. Steel-Concrete Compos. Struct. Using High-Strength Mater. (2021) 125–142. https://doi.org/10.1016/B978-0-12-823396-2.00011-3.

J.H. Ideker, K.L. Scrivener, H. Fryda, B. Touzo, Calcium Aluminate Cements, Lea’s Chem. Cem. Concr. (2019) 537–584. https://doi.org/10.1016/B978-0-08-100773-0.00012-5.

P.-C. Aïtcin, Supplementary cementitious materials and blended cements, Sci. Technol. Concr. Admixtures (2016) 53–73. https://doi.org/10.1016/b978-0-08-100693-1.00004-7.

L.F. de Magalhães, S. França, M. dos S. Oliveira, R.A.F. Peixoto, S.A.L. Bessa, A.C. da S. Bezerra, Iron ore tailings as a supplementary cementitious material in the production of pigmented cements, J. Clean. Prod. 274 (2020) 123260. https://doi.org/10.1016/j.jclepro.2020.123260.

M.L.F. Martins, R.R. Barreto, P.R.R. Soares Junior, I.P. Pinheiro, A.C. da S. Bezerra, Metal magnesium industry waste for partial replacement of Portland cement, Rev. IBRACON Estruturas e Mater. 13 (2020) 1–9. https://doi.org/10.1590/s1983-41952020000600011.

L.R.C. Tavares, J.F.T. Junior, L.M. Costa, A.C. da Silva Bezerra, P.R. Cetlin, M.T.P. Aguilar, Influence of quartz powder and silica fume on the performance of Portland cement, Sci. Rep. 10 (2020) 1–15. https://doi.org/10.1038/s41598-020-78567-w.

B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.

B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.

K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.

M.L.F. Martins, P.R.R. Soares Junior, T. Henrique da Silva, P. de Souza Maciel, I. Peixoto Pinheiro, A.C.S. Bezerra, Magnesium industry waste and red mud to eco-friendly ternary binder: Producing more sustainable cementitious materials, Constr. Build. Mater. 310 (2021) 125172. https://doi.org/10.1016/J.CONBUILDMAT.2021.125172.

N.C. Gomes Silveira, M.L. Figueiredo Martins, A.C. da S. Bezerra, F. Gabriel da Silva Araújo, Ecological geopolymer produced with a ternary system of red mud, glass waste, and Portland cement, Clean. Eng. Technol. 6 (2022) 100379. https://doi.org/10.1016/J.CLET.2021.100379.

L.R.C. Tavares, J.F.T. Junior, L.M. Costa, A.C. da Silva Bezerra, P.R. Cetlin, M.T.P. Aguilar, Influence of quartz powder and silica fume on the performance of Portland cement, Sci. Reports 2020 101 10 (2020) 1–15. https://doi.org/10.1038/s41598-020-78567-w.

M.H. Samarakoon, P.G. Ranjith, V.R.S. De Silva, Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118013.

R. Siddique, N. Chahal, Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resour. Conserv. Recycl. 55 (2011) 739–744. https://doi.org/10.1016/J.RESCONREC.2011.03.004.

X. Zhang, X. Guan, C. Ma, Characterization of hydration depths of cement particles with different sizes in hardened cement-based materials, Constr. Build. Mater. 300 (2021) 123986. https://doi.org/10.1016/J.CONBUILDMAT.2021.123986.

V.T. Nguyen, S.Y. Lee, S.Y. Chung, J.H. Moon, D.J. Kim, Effects of cement particle distribution on the hydration process of cement paste in three-dimensional computer simulation, Constr. Build. Mater. 311 (2021) 125322. https://doi.org/10.1016/J.CONBUILDMAT.2021.125322.

ABNT, NBR 7215 - Cimento Portland - Determinação da resistência à compressão, Assoc. Bras. NORMAS TÉCNICAS (2019).

ABNT, NBR 5752 - Materiais pozolânicos - Determinação do índice de desempenho com cimento Portland aos 28 dias., Assoc. Bras. NORMAS TÉCNICAS (2014).

ABNT, NBR 16697 - Cimento Portland - Requisitos, Assoc. Bras. NORMAS TÉCNICAS (2018).

S.N. Shah, K.H. Mo, S.P. Yap, M.K.H. Radwan, A. El-Shafie, Chemically treated silica aerogel for the use in lightweight cementitious composite, Case Stud. Constr. Mater. 18 (2023) e01742. https://doi.org/10.1016/J.CSCM.2022.E01742.

Z. Bayer Öztürk, T. Çam, Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste, Mater. Chem. Phys. 307 (2023) 128112. https://doi.org/10.1016/J.MATCHEMPHYS.2023.128112.

Y. Liao, W. Li, B. Da, Y. Meng, D. Chen, Research on properties of waste oyster shell mortar: The effect of calcination temperature of oyster shell powder, Case Stud. Constr. Mater. 19 (2023) e02639. https://doi.org/10.1016/J.CSCM.2023.E02639.

E. Özçelikci, A. Oskay, İ.R. Bayer, M. Şahmaran, Eco-hybrid cement-based building insulation materials as a circular economy solution to construction and demolition waste, Cem. Concr. Compos. 141 (2023) 105149. https://doi.org/10.1016/J.CEMCONCOMP.2023.105149.

H.A. Subhani, R.A. Khushnood, S. Shakeel, Synthesis of recycled bricks containing mixed plastic waste and foundry sand: Physico-mechanical investigation, Constr. Build. Mater. 416 (2024) 135197. https://doi.org/10.1016/J.CONBUILDMAT.2024.135197.

L.A.S. de Aquino, T.R.C. Silva, M. Teixeira Marvila, A.R.G. de Azevedo, Agro-industrial waste from corn straw fiber: Perspectives of application in mortars for coating and laying blocks based on Ordinary Portland cement and hydrated lime, Constr. Build. Mater. 353 (2022) 129111. https://doi.org/10.1016/J.CONBUILDMAT.2022.129111.

V.F. Lotfy, A.H. Basta, E.S. Shafik, Assessment of the effect of different pulping by-products on enhancing the reuse of rubber waste in producing of cement-mortar, Int. J. Biol. Macromol. 256 (2024) 128205. https://doi.org/10.1016/J.IJBIOMAC.2023.128205.

X. Ma, J. Pan, J. Cai, Z. Zhang, J. Han, A review on cement-based materials used in steel structures as fireproof coating, Constr. Build. Mater. 315 (2022) 125623. https://doi.org/10.1016/J.CONBUILDMAT.2021.125623.

Published

2024-10-07

How to Cite

MARTINS, Maysa Lorena Figueiredo; MATEUS PIMENTA, Marcio; CESAR DA SILVA BEZERRA, Augusto. Utilization of Food Industry Waste for the Production of Sustainable Cementitious Materials. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–10. DOI: 10.46421/entac.v20i1.6279. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/6279. Acesso em: 23 nov. 2024.

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 

You may also start an advanced similarity search for this article.