Types of sensors used in the periodic inspection of urban assets

Authors

DOI:

https://doi.org/10.46421/entac.v20i1.6294

Keywords:

Urban assets, Monitoring, Embedded Sensors, Internet of Things

Abstract

In large urban centers, the number of infrastructure assets is very high and their state of conservation can undergo significant changes over time. Periodically inspecting these assets is a fundamental task to avoid financial losses and even accidents involving residents. However, with limited budgets and work teams, carrying out adequate monitoring of these assets is difficult and society often shows dissatisfaction with urban janitorial care. In this context, the objective of this work is to compare the sensor options typically used to automate this monitoring through electronic engineering. To this end, a bibliographical review was carried out of the main techniques currently used and their respective limitations, both in cost and frequency of data acquisition. It was observed that the use of embedded sensors, especially in topologies that allow decentralized collective sensing, obtains better cost-benefit compared to traditional options, indicating a possible way to monitor the urban environment through low-cost sensors.

Author Biographies

Giovanni Bruno Molitor Schiffini, Universidade de São Paulo

Engenheiro Eletrônico pela Universidade São Judas Tadeu.

Mestrando em Tecnologia e Gestão na Produção na Escola Politécnica da Universidade de São Paulo.

Jonathan Chefaly Mochon Zappile, Universidade de São Paulo

Mestre pela Escola Politécnica da Universidade de São Paulo. 

Renan Pereira de Andrade, Universidade de São Paulo

Mestre pela Escola Politécnica da Universidade de São Paulo.

Flavio Leal Maranhão, Universidade de São Paulo

Doutorado pela Escola Politécnica da Universidade de São Paulo.

References

PAPANDREA, S. F.; CATALDO, M. F.; ZIMBALATTI, G.; PROTO, A. R. Comparative evaluation of inspection techniques for decay

detection in urban trees. Sensors and Actuators A: Physical, v. 340, 2022, 113544. ISSN 0924-4247. Disponível em: https://

doi.org/10.1016/j.sna.2022.113544.

TOMIYAMA, K., et al. A mobile profilometer for road surface monitoring by use of accelerometers. 7th Symposium on Pavement

Surface Characteristics: SURF 2012. p. 1–10, 2012.

STUBBINGS, P.; PESKETT, J.; ROWE, F.; ARRIBAS-BEL, D. A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep

Learning. Remote Sens., 2019, 11, 1395. doi:10.3390/rs11121395.

TRILLES, S.; CALIA, A.; BELMONTE, Ó.; TORRES-SOSPEDRA, J.; MONTOLIU, R.; HUERTA, J. Deployment of an open sensorized

platform in a smart city context. Future Generation Computer Systems, v. 76, 2017, p. 221-233. ISSN 0167-739X. Disponível em:

https://doi.org/10.1016/j.future.2016.11.005.

ADAM, M. S.; ANISI, M. H.; ALI, I. Object tracking sensor networks in smart cities: Taxonomy, architecture, applications, research

challenges and future directions. Future Generation Computer Systems, v. 107, 2020, p. 909-923. ISSN 0167-739X. Disponível em:

https://doi.org/10.1016/j.future.2017.12.011.

ASHRAF, S. A proactive role of IoT devices in building smart cities. Internet of Things and Cyber-Physical Systems, v. 1, 2021, p.

-13. ISSN 2667-3452. Disponível em: https://doi.org/10.1016/j.iotcps.2021.08.001.

GU, Y.; LIU, Y.; LIU, D.; HAN, L. D.; JIA, X. Spatiotemporal kernel density clustering for wide area near Real-Time pothole detection.

Advanced Engineering Informatics, v. 60, 2024, 102351. ISSN 1474-0346. Disponível em: https://doi.org/10.1016/j.aei.2023.102351.

GIATEC. Giatec Scientific Home. 2023. Disponível em: https://www.giatecscientific.com/. Acesso em: 24 dez. 2023.

WANG, N.; HAN, T.; CHENG, H.; LI, T.; FU, J.; MA, T.; FU, Y.; CHEN, F.; ZHANG, Y. Monitoring structural health status of asphalt

pavement using intelligent sensing technology. Construction and Building Materials, v. 352, 2022. ISSN 0950-0618. Disponível em:

https://doi.org/10.1016/j.conbuildmat.2022.129025.

ZAPPILE, J. C. M. Desenvolvimento de sensor baseado em IoT para monitoramento contínuo das propriedades do concreto

moldado in loco “brita eletrônica”. Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo, São Paulo, 2023.

HAN, D.; LIU, G.; XI, Y.; XIA, X.; ZHAO, Y. Real-time monitoring of strain and modulus of asphalt pavement using built-in strain

sensor cluster. Construction and Building Materials, v. 384, 2023, 131413. ISSN 0950-0618. Disponível em: https://doi.org/10.1016/

j.conbuildmat.2023.131413.

BAO, M.; TIAN, Y.; LIU, S.; LING, J.; XIANG, P.; ZHAO, X.; LIU, L.; WU, J. A data-driven approach to the strength evaluation of airfield

rigid pavement using in situ instrumentation data. Construction and Building Materials, v. 409, 2023, 133824. ISSN 0950-0618.

Disponível em: https://doi.org/10.1016/j.conbuildmat.2023.133824.

PRADE, L.; MORAES, J.; DE ALBUQUERQUE, E.; ROSÁRIO, D.; BOTH, C. B. Multi-radio and multi-hop LoRa communication

architecture for large scale IoT deployment. Computers and Electrical Engineering, v. 102, 2022. ISSN 0045-7906. Disponível em:

<https://doi.org/10.1016/j.compeleceng.2022.108242

ELDEFRAWY, M.; BUTUN, I.; PEREIRA, N.; GIDLUND, M. Formal security analysis of LoRaWAN. Computer Networks, v. 148, 2019, p.

-339. ISSN 1389-1286. Disponível em: https://doi.org/10.1016/j.comnet.2018.11.017.

JIANG, H.; PENG, M.; ZHONG, Y.; XIE, H.; HAO, Z.; LIN, J.; MA, X.; HU, X. A Survey on Deep Learning-Based Change Detection from

High-Resolution Remote Sensing Images. Remote Sens., 2022, 14, 1552. https://doi.org/10.3390/rs14071552.

METZLER, A. B.; NATHVANI, R.; SHARMANSKA, V.; BAI, W.; MULLER, E.; MOULDS, S.; AGYEI-ASABERE, C.; ADJEI-BOADI, D.; KYERE-

GYEABOUR, E.; DOKU TETTEH, J.; OWUSU, G.; AGYEI-MENSAH, S.; BAUMGARTNER, J.; ROBINSON, B. E.; ARKU, R. E.; EZZATI, M.

Phenotyping urban built and natural environments with high-resolution satellite images and unsupervised deep learning. Science

of The Total Environment, Volume 893, 2023. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2023.164794.

OZDENA, A.; FAGHRIA, A.; LIA, M.; TABRIZIB, K. Evaluation of Synthetic Aperture Radar Satellite Remote Sensing for Pavement and

Infrastructure Monitoring. Procedia Engineering 145, 2016, p 752 – 759. doi: 10.1016/j.proeng.2016.04.098.

BASHAR, M. Z.; TORRES-MACHI, C. Deep learning for estimating pavement roughness using synthetic aperture radar data.

Automation in Construction, Volume 142, 2022. ISSN 0926-5805. https://doi.org/10.1016/j.autcon.2022.104504.

WU, H.; YAO, L.; XU, Z.; LI, Y.; AO, X.; CHEN, Q.; LI, Z.; MENG, B. Road pothole extraction and safety evaluation by integration of

point cloud and images derived from mobile mapping sensors. Advanced Engineering Informatics, v. 42, 2019. ISSN 1474-0346.

Disponível em: https://doi.org/10.1016/j.aei.2019.100936.

NASSAR, A.; AMER, K.; ELHAKIM, R.; ELHELW, M. A Deep CNN-Based Framework For Enhanced Aerial Imagery Registration with

Applications to UAV Geolocalization. Conference on Computer Vision and Pattern Recognition Workshops. 2160-7516/18, 2018,

IEEE. DOI 10.1109/CVPRW.2018.00201.

YAN, H.; ZHANG, J. UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images. Data in Brief,

Volume 51, 2023. ISSN 2352-3409. https://doi.org/10.1016/j.dib.2023.109692.

ATENCIO, E.; PLAZA-MUÑOZ, F.; MUÑOZ-LA RIVERA, F.; LOZANO-GALANT, J. A. Calibration of UAV flight parameters for pavement

pothole detection using orthogonal arrays. Automation in Construction, Volume 143, 2022. ISSN 0926-5805. https://

doi.org/10.1016/j.autcon.2022.104545.

GARILLI, E.; BRUNO, N.; AUTELITANO, F.; RONCELLA, R.; GIULIANI, F. Automatic detection of stone pavement's pattern based on

UAV photogrammetry. Automation in Construction, Volume 122, 2021. ISSN 0926-5805. https://doi.org/10.1016/

j.autcon.2020.103477.

ZHU, J.; ZHONG, J.; MA, T.; HUANG, X.; ZHANG, W.; ZHOU, Y. Pavement distress detection using convolutional neural networks with

images captured via UAV. Automation in Construction, v. 133, 2022. ISSN 0926-5805. Disponível em: https://doi.org/10.1016/

j.autcon.2021.103991.

HE, J.; SHAO, L.; LI, Y.; WANG, K.; LIU, W. Pavement damage identification and evaluation in UAV-captured images using gray level

co-occurrence matrix and cloud model. Journal of King Saud University - Computer and Information Sciences, Volume 35, Issue 9,

ISSN 1319-1578. https://doi.org/10.1016/j.jksuci.2023.101762.

VAN DER HORST, B. B.; LINDENBERGH, R. C.; PUISTER, S. W. J. Mobile laser scan data for road surface damage detection. Int. Arch.

Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 1141–1148, 2019. DOI: https://doi.org/10.5194/isprs-archives-XLII-2-

W13-1141-2019.

SAYERS, M. W.; GILLESPIE, T. D.; QUEIROZ, C. A. V. The International Road Roughness Experiment: A Basis for Establishing a

Standard Scale for Road Roughness Measurements. Transportation Research Record. 1986.

LIMA, L. C.; AMORIM, V. J. P.; PEREIRA, I. M.; RIBEIRO, F. N.; OLIVEIRA, R. A. R. Using Crowdsourcing Techniques and Mobile Devices

for Asphaltic Pavement Quality Recognition. VI Brazilian Symposium on Computing Systems Engineering. 978-1-5090-2653-1/16.

IEEE. DOI 10.1109/SBESC.2016.26.

DU, Y.; LIU, C.; WU, D.; JIANG, S. Measurement of International Roughness Index by Using Z-Axis Accelerometers and GPS.

Mathematical Problems in Engineering, Volume 2014, Article ID 928980. Disponível em: http://dx.doi.org/10.1155/2014/928980.

PAIXÃO, M. J. S. Determinação da irregularidade superficial do pavimento por meio dos dados de sensores de aceleração vertical

obtidos por medição descentralizada. Dissertação (Mestrado) - Escola Politécnica da Universidade de São Paulo, São Paulo, 2021.

LIMA, G. de S. Detecção de anomalias em pavimentos utilizando sensores inerciais. Dissertação (Mestrado) - Escola Politécnica da

Universidade de São Paulo. São Paulo. 2023.

TEDESCHI, A.; BENEDETTO, F. A real-time automatic pavement crack and pothole recognition system for mobile Android-based

devices. Advanced Engineering Informatics, Volume 32, 2017, Pages 11-25. ISSN 1474-0346. Disponível em: https://

doi.org/10.1016/j.aei.2016.12.004.

LI, P.; ZHOU, B.; WANG, C.; HU, G.; YAN, Y.; GUO, R.; XIA, H. CNN-based pavement defects detection using grey and depth images.

Automation in Construction, Volume 158, 2024, 105192. ISSN 0926-5805. Disponível em: https://doi.org/10.1016/

j.autcon.2023.105192.

ZENG, J.; GÜL, M.; MEI, Q. A computer vision-based method to identify the international roughness index of highway pavements.

Journal of Infrastructure Intelligence and Resilience, Volume 1, Issue 1, 2022. ISSN 2772-9915. Disponível em: https://

doi.org/10.1016/j.iintel.2022.100004.

MISRA, A.; GOOZE, A.; WATKINS, K.; ASAD, M.; LE DANTEC, C. A. Crowdsourcing and Its Application to Transportation Data

Collection and Management. Transportation Research Record: Journal of the Transportation Research Board, No. 2414, D.C., 2014,

pp. 1–8. DOI: 10.3141/2414-01.

STANIEK, M. Road pavement condition diagnostics using smartphone-based data crowdsourcing in smart cities. Journal of Traffic

and Transportation Engineering (English Edition), Volume 8, Issue 4, 2021, Pages 554-567. ISSN 2095-7564. Disponível em: https://

doi.org/10.1016/j.jtte.2020.09.004.

LI, T.; SURVE, T.; THOMPSON, E.; TAO, C.; BIAN, Y. Towards Human-Centered Pavement Quality Annotation with Crowdsourcing.

Procedia Computer Science, Volume 224, 2023, Pages 266-273. ISSN 1877-0509. Disponível em: https://doi.org/10.1016/

j.procs.2023.09.036.

Published

2024-10-07

How to Cite

SCHIFFINI, Giovanni Bruno Molitor; ZAPPILE, Jonathan Chefaly Mochon; ANDRADE, Renan Pereira de; MARANHÃO, Flavio Leal. Types of sensors used in the periodic inspection of urban assets. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–15. DOI: 10.46421/entac.v20i1.6294. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/6294. Acesso em: 23 nov. 2024.

Issue

Section

Tecnologia da Informação e Comunicação

Similar Articles

<< < 33 34 35 36 37 38 39 40 41 42 > >> 

You may also start an advanced similarity search for this article.