

Pessoa-PB

PROPRIEDADES FÍSICO-MECÂNICAS DE ARGAMASSAS GEOPOLIMÉRICAS REFORÇADAS COM FIBRAS POLIMÉRICAS NATURAIS E SINTÉTICAS.

Tema: Inovação em argamassas e revestimentos.

Madeleing Taborda Barraza¹, Luis Urbano Durlo Tambara Junior², Lucas Onghero³, Philippe Jean Paul Gleize⁴, Afonso Rangel Garcez de Azevedo⁵.

¹Pós-Doutoranda, PPGEC – Universidade Federal Santa Catarina/UFSC, madelatb@gmail.com
² Pós-Doutorando, LAMAV-Universidade Estadual do Norte Fluminense Darcy Ribeiro/UENF, luistambara@gmail.com
³ Pós-Doutorando, PPGEC – Universidade Federal Santa Catarina/UFSC, lucasjba@gmail.com

⁴ Prof. Dr., PPGEC – Universidade Federal Santa Catarina/UFSC, p.gleize@ufsc.br ⁵ Prof. Dr., LAMAV-Universidade Estadual do Norte Fluminense Darcy Ribeiro/UENF, afonso@uenf.br

RESUMO

Quatro tipos de fibras poliméricas, duas sintéticas e duas naturais, foram incorporadas em matriz geopolimérica a base de metacaulim, com o objetivo de comparar os feitos produzidos sobre as propriedades físico-mecânicas do compósito. Os resultados demostraram que as fibras curtas de açaí, fibra de poliéster e fibra de vidro, contribuem para a resistência à compressão em 15%, 18% e 30%, respetivamente. A fibra longa da coroa do abacaxi prejudicou este parâmetro. Porém, foi a fibra do açaí que contribuiu no ganho de 30% na resistência à flexão.

Palavras-chave: geopolímero, argamassa, fibra natural, fibra sintética.

PHYSICAL-MECHANICAL PROPERTIES OF GEOPOLYMERIC MORTARS REINFORCED WITH NATURAL AND SYNTHETIC POLYMERIC FIBERS.

ABSTRACT

Four types of polymeric fibers were incorporated into a metakaolin-based geopolymer matrix, two synthetic and two natural. This work aims to compare the effects produced on the physical-mechanical properties of the reference matrix. The results showed that short fibers significantly contribute to compressive strength in the following order: açaí fiber, polyester fiber, and glass fiber, 15%, 18%, and 30%, respectively. The long fiber (pineapple fiber) causes a reduction of this parameter. However, the acai fiber contributed to the 30% increase in flexural strength.

Key-words: geopolymer, mortar, fiber, natural, synthetic.

1. INTRODUÇÃO

Similar aos materiais cimentícios, os materiais geopoliméricos, conhecidos como ativações alcalinas com baixo teor de CaO [1-2], requerem elementos de reforços para compensar a sua fragilidade sobre efeitos de cargas atuantes perpendicular ao seu eixo longitudinal [3-5]. Esses elementos de reforços comumente são a base de aço [6-7]. As fibras poliméricas tanto sintéticas como naturais vêm aparecendo na área e considerando a sua natureza pode se tornar mais convenientes para utilização como reforço [8-12]. Considerando que uma das problemáticas do reforço metálico é a possibilidade de corrosão e difícil incorporação. Ora, quando se trata de fibras obtidas de uma fonte provável de resíduos, tais como a coroa do abacaxi e o caroço do açaí, é possível obter um valor agregado em matrizes de ligantes alternativos, a sustentabilidade [13-15]. Assim, comparar o comportamento destes compósitos sobre condições de carga se torna interessante para conhecer a viabilidade de incorporação e a contribuição no desempenho mecânico.

2. PROGRAMA EXPERIMENTAL

2.1 Materiais

Como matriz de base foi utilizado um metacaulim comercial, denominado MK, cuja composição química, caracterização mineralógica e granulometria são apresentadas na tabela 1 e na Figura 1a,b, respetivamente. A distribuição de tamanho de partícula foi obtida usando *Microtrac*3500, com leituras a seco e uma faixa de deteção entre 0,1 e 2800 µm. A caracterização mineralógica utilizou um difratômetro da marca *Rigaku MiniFlex II*, com varredura 20 entre 8-65°. Para o MK identificou-se a presença de um halo amorfo entre 16-40° e a presença de fases cristalinas como quartzo, kaolinita, ilita e hematita. A composição química foi obtida usando a técnica de fluorescência de raios-X, no *EDX-*7000 da *Shimadzu*, o MK apresentou relação SiO₂/Al₂O₃ = 1,33. A areia utilizada foi oriunda do rio Paraíba do Sul, cuja granulometria também é apresentada na Figura 1b.

A solução ativadora composta foi preparada dissolvendo o silicato de sódio sólido em água destilada por 2 horas a 80°C e após resfriamento acrescentado o hidróxido de sódio em micropérolas. As relações molares do sistema foram especificadas na tabela 2 e sua molaridade foi de 6,16 M de NaOH. Esta foi escolhida como uma adaptação de trabalho realizado por [16].

Oxido	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	K₂O	TiO ₂	MnO	Outros
%	51,3	38,3	7,2	1,0	1,63	0,20	0,37

Tabela 1 – Composição química	a do metacaulim (MK) utilizado
-------------------------------	--------------------------------

Tabela 2 – Relações molares da matriz de base

Relação	Na ₂ O/ SiO ₂	SiO ₂ /Al ₂ O ₃	H ₂ O / Na ₂ O	Na_2O / Al_2O_3
Valor	0,18	3,51	18,03	0,64

As aparências das fibras estão registradas na Figura 2 e na Tabela 3 são indicadas as medidas de comprimento médio das fibras incorporadas. O teor de incorporação foi fixado em 1% em massa, com respeito ao precursor (MK).

Figura 2 – Aparências das fibras empregadas: a) fibra de vidro, b) fibra de abacaxi, c) fibra de poliester, d) fibra de açai

oao

essoa-PR

ntro de Convei

Tabela 3 – Comprimento médio das fibras empregadas

Tipo de Fibra	Poliéster	Vidro	Abacaxi	Açaí
Comprimento (mm)	20	12	55	22

2.2 Métodos

Após resfriamento da solução ativadora, 5g de água foram adicionadas no fundo da cuba de uma argamassadeira, os materiais secos foram acrescentados e misturados com a fibra manualmente dentro da cuba, de maneira a evitar a sua aglomeração. Posteriormente, foi acrescentada a solução alcalina e realizada mistura mecânica. Realizou-se mistura em velocidade média por 2 min, com 30 s de descanso e remoção de material das paredes da cuba, em seguida, misturou-se em velocidade alta por mais 2.5 min. A argamassa foi esvaziada em moldes prismáticos de 20x30x120mm, selada com plástico até o dia de ensaio em temperatura ambiente ($23 \pm 1^{\circ}$ C) e umidade relativa de 50 ± 2%. A nomenclatura dos grupos é indicada na Tabela 4.

Nome	Especificação
REF	Amostra de referência
R+F. POLI	REF + Fibra de poliéster
R+F.VIDRO	REF + Fibra de vidro
R+F. CAXI	REF + Fibra da coroa do abacaxi
R+F.AÇAI	REF + Fibra do caroço do açaí

Tabela 4 – Nomenclatura das amostras ensaiadas

Todos os ensaios foram aplicados sobre as amostras em estado endurecido: inicialmente foi registrado o modulo de elasticidade dos grupos mediante a técnica de excitação por impulso (3 de cada grupo), utilizando o equipamento *Sonelastic*, um ensaio nãodestrutivo que permite determinar o modulo de elasticidade dinâmico das amostras. As amostras (6 de cada grupo) foram ensaiadas à flexão em 3 pontos, usando uma prensa *Instron* 34FM-100 aplicando uma velocidade de carga de 3000N/min e posteriormente, amostras cúbicas provenientes dos prismas (6 de cada grupo) foram ensaiadas à compressão na mesma velocidade de carga. As amostras restantes (4 de cada grupo) foram submetidas a imersão em água por 48 horas e registrado seu peso saturado até obter massa constante, posteriormente foram colocadas na estufa a 100°C por 48 horas até novamente ter massa constante e assim obter sua porcentagem de absorção.

3. DISCUSSÃO DE RESULTADOS

Na Figura 3 estão registradas as resistências dos traços realizados, em vermelho, a resistência à compressão e ,em preto, a resistência à flexão. É visivel que a fixação em 1% de fibra, em massa, teve efeitos positivos sobre a matriz de referência. Este teor foi identificado na literatura [17-18] como conveniente para dois tipos de fibras de natureza diferente, sendo que maiores teores poderiam comprometer a trabalhabilidade [19]. Os incrementos registrados foram similares aos obtidos por [20], sendo que [20-21] indicam que fibras curtas favorecem o ganho de resistencia e que maiores porcentagens resultam na redução de desempenho. Com relação ao comprimento das fibras é necessario discutir a superficie/diâmetro e a resistencia à tração da mesma [13], que segundo registros [14, 22-24] obedeceriam a seguinte relação de grandeza na resistência: Vidro>Poliester>Abacaxi>Açai. Desta maneira, o comprimento da fibra de abacaxi acabou perjudicando o desempenho mecânico e fibra de açai ,apesar de ter menor resistencia à tração, apresentou melhor dispersão e com superficie de aderencia mais irregular [14] levando ao incremento de 30% na resistência à flexão do composito.

O aspecto visual após a ruptura das amostras é visto na Figura 4, com ajuda de um microscópio digital da marca Funien com sensor de imagem tipo CMOS e faixa de foco entre 15-40mm. Foi comparada a dispersão das fibras na seção transversal das amostras, sendo que as fibras mais curtas como a poliéster e a fibra de açaí conseguiram atuar como ponte de

conexão durante a aplicação de carga. Dificilmente era possível visualizar as fibras de vidro dispersas no sistema, enquanto a fibra de abacaxi era facilmente visível ao olho nu.

Figura 4 – Imagens com microscópio digital das diferentes amostras aos 14 dias

Especificações:

- a) Amostra de referência
- b) Amostra com fibra poliester
- c) Amostra com fibra de vidro
- d) Amostra com fibra de abacaxi
- e) Amostra com fibra de açai

Conforme a Figura 5, a incorporação de fibras em geral levou à redução em 9% da absorção da matriz de referência. Apesar que a adição fibras poliméricas sintéticas pouparia

b)

o sistema de problemas de hidrofilicidade [26], típica em fibras de origem vegetal [27], o comportamento entre todos os grupos contendo-as é similar. Segundo autores como [28], [29] a incorporação de fibras sintéticas pode levar à redução ou à equivalência na absorção de água na matriz de base, porém [30], aponta que entre fibras do mesmo tipo a absorção dá agua no sistema endurecido pode ser maior após o teor de fibra critico ser superado, aonde teriam lugar maior presença de poros e redução da densidade de massa [31]. Poderia ser afirmado que, as fibras sintéticas dificultaram a penetração da água no sistema e, portanto, redução na absorção dela; assim como as fibras naturais, que inicialmente absorvendo água livre do sistema passaram a ter melhor aderência com a matriz.

Figura 5 – Porcentagem de absorção de água e módulo de elasticidade das amostras aos 14 dias

4. CONCLUSÕES

Foi possível fabricar compósitos geopoliméricos contendo fibras naturais e sintéticas limitando sua massa em 1%, por adição, sobre o precursor. As primeiras conclusões obtidas foram:

- As fibras curtas são capazes de promover incremento simultâneo na resistência à compressão e à flexão, sendo que a fibra natural do açaí teve desempenho similar à resistência à compressão a uma fibra poliéster, porém foi maior que ela na resistência à flexão.
- A adição de fibras no teor usado foi conveniente para evitar a formação de poros que levassem ao incremento de absorção de água, sendo todas de similar valor, i.e, 16%

de absorção de água por imersão, ainda que as fibras naturais apresentem uma natureza hidrofílica.

 A fibra de açaí promove um aumento nas resistências, podendo levar à redução do módulo de elasticidade dinâmico dos compósitos, esse pode ser justificado pela natureza da fibra, que tendo um baixo valor de modulo produz descontinuidades na matriz de referência e em consequência o compósito registra uma redução no parâmetro.

5. AGRADECIMENTOS

Os autores agradecem à CNPq, projeto 151351/2022-8 e, à FAPERJ, projeto PDR10–204.171/2021 e pelo apoio financeiro na compra de insumos para realização desta pesquisa, assim como aos laboratórios LAMAV/UENF e NANOTEC/UFSC onde foi possível caracterizar os compósitos.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] J. L. Provis and J. S. J. van Deventer, "Geopolymerisation kinetics. 2. Reaction kinetic modelling," *Chem. Eng. Sci.*, vol. 62, no. 9, pp. 2318–2329, 2007, doi: 10.1016/j.ces.2007.01.028.
- [2] S. A. Bernal, J. L. Provis, V. Rose, and R. Mejía De Gutierrez, "Evolution of binder structure in sodium silicate-activated slag-metakaolin blends," *Cem. Concr. Compos.*, vol. 33, no. 1, pp. 46– 54, 2011, doi: 10.1016/j.cemconcomp.2010.09.004.
- [3] Q. Zhao, B. Nair, T. Rahimian, and P. Balaguru, "Novel geopolymer based composites with enhanced ductility," *J. Mater. Sci.*, vol. 42, no. 9, pp. 3131–3137, 2007, doi: 10.1007/s10853-006-0527-4.
- [4] M. H. Menger, "Comportamento mecânico de compósitos contendo cimento álcali-ativado e microfibras metálicas," Dissertação de mestrado. Programa de pós-graduação em Engenharia Civil. Universidade Federal de Santa Catarina, 2018.
- [5] N. Ranjbar and M. Zhang, "Fiber-reinforced geopolymer composites: A review," *Cem. Concr. Compos.*, vol. 107, no. December 2019, p. 103498, 2020, doi: 10.1016/j.cemconcomp.2019.103498.
- [6] M. C. de A. Braz and F. B. C. do Nascimento, "Concreto reforçado com fibras de aço," *Cad. Grad.*, vol. 3, no. 1, pp. 43–56, 2015.
- [7] L. Onghero, "Modelo para previsão da retração autógena em concretos de ultra alto desempenho reforçados com fibra," Tese de doutorado. Programa de pós-graduação em Engenharia Civil. Universidade Federal de Santa Catarina, 2022.
- [8] G. Masi, W. D. A. Rickard, M. C. Bignozzi, and A. Van Riessen, "The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers," *Compos. Part B Eng.*, vol. 76, pp. 218–228, 2015, doi: 10.1016/j.compositesb.2015.02.023.

- [9] M. Dong, W. Feng, M. Elchalakani, G. K. Li, A. Karrech, and M. N. Sheikh, "Material and glassfibre-reinforced polymer bond properties of geopolymer concrete," *Mag. Concr. Res.*, vol. 72, no. 10, pp. 509–525, 2020, doi: 10.1680/jmacr.18.00273.
- [10] A. R. G. de Azevedo et al., "Natural fibers as an alternative to synthetic fibers in reinforcement of geopolymer matrices: A comparative review," *Polymers (Basel).*, vol. 13, no. 15, 2021, doi: 10.3390/polym13152493.
- [11] A. Gholampour, A. Danish, T. Ozbakkaloglu, J. H. Yeon, and O. Gencel, "Mechanical and durability properties of natural fiber-reinforced geopolymers containing lead smelter slag and waste glass sand," *Constr. Build. Mater.*, vol. 352, no. September, p. 129043, 2022, doi: 10.1016/j.conbuildmat.2022.129043.
- [12] P. Zhang, K. Wang, J. Wang, J. Guo, S. Hu, and Y. Ling, "Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2," Ceram. Int., vol. 46, no. 12, pp. 20027–20037, 2020, doi: 10.1016/j.ceramint.2020.05.074.
- [13] E. A. S. Correia, "Compósitos de Matriz Geopolimérica Reforçados com Fibras Vegetais de Abacaxi e de Sisal," Tese de doutorado. Programa de pós-graduação em Engenharia Mecênica. Universidade Federal de Paraíba, 2011.
- [14] A. R. G. de Azevedo, M. T. Marvila, B. A. Tayeh, D. Cecchin, A. C. Pereira, and S. N. Monteiro, "Technological performance of açaí natural fibre reinforced cement-based mortars," *J. Build. Eng.*, vol. 33, no. March 2020, p. 101675, 2021, doi: 10.1016/j.jobe.2020.101675.
- [15] D. N. P. S. de OLIVEIRA, "Painéis de cimento portland produzidos com fibras do mesocarpo do açaí," Dissertação de mestrado. Programa de Pós-Graduação em Ciências Ambientais. Universidade Federal do Amapá, 2019.
- [16] M. Taborda-Barraza, F. Padilha, L. Silvestro, A. R. G. de Azevedo, and P. J. P. Gleize, "Evaluation of CNTs and SiC Whiskers Effect on the Rheology and Mechanical Performance of Metakaolin-Based Geopolymers," *Materials (Basel).*, vol. 15, no. 17, 2022, doi: 10.3390/ma15176099.
- [17] E. Mohseni, "Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites," *Constr. Build. Mater.*, vol. 186, pp. 904–911, 2018, doi: 10.1016/j.conbuildmat.2018.08.032.
- [18] G. Lazorenko, A. Kasprzhitskii, A. Kruglikov, V. Mischinenko, and V. Yavna, "Sustainable geopolymer composites reinforced with flax tows," *Ceram. Int.*, vol. 46, no. 8, pp. 12870–12875, 2020, doi: 10.1016/j.ceramint.2020.01.184.
- [19] G. Laxmi and S. G. Patil, "Effect of fiber types, shape, aspect ratio and volume fraction on properties of geopolymer concrete – A review," *Mater. Today Proc.*, vol. 65, pp. 1086–1094, 2022, doi: 10.1016/j.matpr.2022.04.157.
- [20] E. Haily, N. Zari, R. Bouhfid, and A. Qaiss, "Natural fibers as an alternative to synthetic fibers in the reinforcement of phosphate sludge-based geopolymer mortar," *J. Build. Eng.*, vol. 67, no. December 2022, p. 105947, 2023, doi: 10.1016/j.jobe.2023.105947.

- [21] T. Lin, D. Jia, P. He, M. Wang, and D. Liang, "Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites," *Mater. Sci. Eng. A*, vol. 497, no. 1–2, pp. 181–185, 2008, doi: 10.1016/j.msea.2008.06.040.
- [22] J. Yuan *et al.*, "SiC fiber reinforced geopolymer composites, part 1: Short SiC fiber," *Ceram. Int.*, vol. 42, no. 4, pp. 5345–5352, 2016, doi: 10.1016/j.ceramint.2015.12.067.
- [23] N. Prem Kumar, M. Chellapandian, N. Arunachelam, and P. Vincent, "Effect of mercerization on the chemical characteristics of plant-based natural fibers," *Mater. Today Proc.*, vol. 68, pp. 1201–1207, 2022, doi: 10.1016/j.matpr.2022.05.319.
- [24] V. Laverde, A. Marin, J. M. Benjumea, and M. Rincón Ortiz, "Use of vegetable fibers as reinforcements in cement-matrix composite materials: A review," *Constr. Build. Mater.*, vol. 340, no. April, 2022, doi: 10.1016/j.conbuildmat.2022.127729.
- [25] A. T. P. J, S. Sreekumar, and A. V Aparna, "Strength Characteristic Study of Polyester Fiber Reinforced Concrete," vol. 6, no. 06, pp. 1–7, 2018.
- [26] S. Ruan, S. Chen, Y. Liu, D. Yan, and Z. Sun, "Investigation on the effect of fiber wettability on water absorption kinetics of geopolymer composites," *Ceram. Int.*, vol. 48, no. 24, pp. 36678– 36689, 2022, doi: 10.1016/j.ceramint.2022.08.227.
- [27] A. B. Tessaro, M. R. F. Gonçalves, D. A. Gatto, E. N. Pollnow, N. L. V. Carreño, and R. de Á. Delucis, "Compósitos cimentícios reforçados com fibras de eucalipto puras e tratadas com tetraetilortossilicato (TEOS 98%)," Ambient. Construído, vol. 15, no. 3, pp. 47–55, 2015, doi: 10.1590/s1678-86212015000300025.
- [28] R. P. Batista, P. H. R. Borges, J. C. Santos, and T. H. Panzera, "Desempenho de geopolímeros reforçados com fibras curtas de pva em função da composição do ativador alcalino," An. do 58° Congr. Bras. do Concreto, no. October, p. 13, 2016.
- [29] A. P. de L. Mendes, "Efeito da adição de fibras sintéticas e naturais nas propriedades físicas e mecânicas de argamassas autonivelantes com metacaulinita," Dissertação de mestrado. Programa de pós-graduação em Engenharia Civil. Universidade Federal do Amazonas, 2019.
- [30] R. V. da Silva, O. Cascudo, and E. Bacarji, "Compósitos cimentícios com fibras de polipropileno: avaliações no estado fresco e endurecido," *Matéria (Rio Janeiro)*, vol. 27, no. 2, 2022, doi: 10.1590/s1517-707620220002.1390.
- [31] M. P. T. Fernandes, "Estudo do acetato de celulose incorporado em matriz geopolimérica à base de metacaulim," Trabalho de conclusão de curso. Faculdade de Engenharia Civil da Universidade. Universidade Federal de Uberlândia, 2021.

