

INFLUÊNCIA DA ESPESSURA DE REVESTIMENTO DE ARGAMASSA DE GESSO NO COMPORTAMENTO TÉRMICO DE PAREDES EM ALVENARIA DE TIJOLOS

DE FRANÇA, Thamires (1); BATISTA, Pedro (2); PÓVOAS, Yêda (3)

- (1) Engenharia Civil, Escola Politécnica de Pernambuco/UPE, tcmf23@gmail.com;
- (2) Mestrado em Engenharia Civil, Escola Politécnica de Pernambuco/UPE, pedroigorbb@gmail.com;
 - (3) Prof^a. Dr^a, Escola Politécnica de Pernambuco/UPE, yvp@poli.br;

Resumo: A boa escolha dos materiais e cores nas paredes e coberturas proporciona aos usuários de uma edificação um maior bem-estar e conforto térmico, além de contribuir com a diminuição do consumo de energia com condicionamento artificial. A presente pesquisa buscou analisar através de ensaios em câmara térmica o comportamento térmico de um protótipo de alvenaria de tijolos cerâmicos constituído de um revestimento externo de argamassa de cimento Portland, e um revestimento interno de gesso com espessura variável. Além disso, foram calculados parâmetros de desempenho térmico, conforme método simplificado da NBR 15220-2 (ABNT, 2005). Como resultado, o protótipo com revestimento de gesso mais espesso apresentou menor variação de temperatura durante o aquecimento, é possível afirmar que a espessura exerce uma influência direta no desempenho térmico, isto é, quanto maior a espessura do revestimento, maior o desempenho térmico da estrutura.

Palavras-chave: Argamassa de gesso, Desempenho térmico, Revestimento Interno.

Área do Conhecimento: Qualidade e desempenho de produtos e sistemas construtivos - aspectos de desempenho.

1 INTRODUÇÃO

O desempenho térmico de um edifício está diretamente relacionado com as características dos elementos que o envolvem e suas interações entre o meio interior e exterior (CAMPOS et al., 2012), como também, conforme afirma a NBR 15575-1 (ABNT, 2013), uma edificação deve reunir características que atendam às exigências de conforto térmico dos usuários. Os estudos em conforto térmico visam principalmente analisar e estabelecer as condições necessárias para a avaliação e concepção de um ambiente térmico adequado às atividades e ocupação humana, bem como estabelecer métodos e princípios para uma detalhada análise térmica de um ambiente (LAMBERTS; DUARTE, 2016).

Em edificações localizadas em países de clima quente, como o Brasil, a aplicação de materiais com menor condutividade térmica, em função de um atraso térmico superior, pode proporcionar menores densidades de fluxo de calor, maximizando o desempenho térmico, melhorando o bem-estar dos ocupantes e reduzindo o consumo de energia com condicionamento de ar.

Um material que o uso em revestimentos internos tem crescido vertiginosamente, principalmente na região nordeste do país, é o gesso, por ser considerado pelas construtoras como um material alternativo de qualidade e de baixo custo. Nos revestimentos internos de paredes, o gesso permite, além da redução do custo, uma maior produtividade no processo de aplicação devido à rapidez de execução e de bom acabamento final (TAVARES et al., 2010). No entanto, ainda não é amplamente discutido o seu comportamento térmico em revestimento interno de paredes.

Com base na problemática ora apresentada, o presente trabalho tem por objetivo analisar o comportamento térmico de um protótipo de alvenaria com variação da espessura do revestimento interno de gesso.

2 MATERIAIS E MÉTODOS

O trabalho consiste na elaboração de um protótipo de alvenaria em tijolos cerâmicos com revestimento externo em argamassa de cimento Portland e revestimento interno de gesso com espessura variada, submetida a um ensaio em câmara térmica, sendo avaliado o seu comportamento térmico. Além disso, foram calculados parâmetros segundo a NBR 15220-2 (ABNT, 2005).

2.1 Cálculo dos parâmetros técnicos

Os parâmetros dos componentes, como resistência térmica, transmitância térmica, capacidade térmica e atraso térmico, para avaliação de seu desempenho térmico, foram calculados pelo método simplificado da norma técnica NBR 15220-2 (ABNT, 2005).

2.2 Preparação do protótipo

Para caracterização do protótipo foram utilizados tijolos cerâmicos de 8 furos com 9x19x19cm. Após 15 dias iniciou-se a aplicação do revestimento externo de argamassa de cimento Portland, sendo aplicado primeiro o chapisco, e após 22 dias o emboço. Para uma boa cura da camada de argamassa de cimento, o ensaio em câmara térmica deveria ocorrer após 28 dias da aplicação da camada, para evitar fissuras no revestimento devido ao recebimento de calor. Nesse intervalo foi realizada a aplicação da primeira camada do revestimento interno de gesso com espessura de 0,5 cm.

Após a realização do primeiro ensaio na câmara térmica, foi aplicada mais uma camada de gesso de 0,5 cm de espessura no mesmo protótipo totalizando uma nova espessura de 1,0 cm, e após 7 dias foi realizado novamente o ensaio.

Para caracterização do protótipo forma utilizadas as denominações GES-05 e GES-10, onde: GES indica a camada de revestimento de gesso; e o numeral 05 e 10 indicam a espessura do revestimento em milímetros conforme apresentado na Quadro 1.

Espessura total da amostra, Revestimento Externo **Revestimento Interno** considerando a espessura do **Amostra Espessura Espessura** Componente Componente tijolo cerâmico de 90mm (mm) (mm) (mm) **GES-05** 5 115 Argamassa de Argamassa de 20 cimento Portland Gesso GES-10 10 120

Quadro 1 - Resumo das características das amostras

Fonte: Autora

2.3 Avaliação do comportamento térmico

Para o ensaio foi utilizada uma câmara térmica com dimensões de (43 x 40 x 43 cm) com uma fonte de calor (uma lâmpada infravermelho de 250 W) em seu interior, simulando o lado externo da edificação, ou seja, o lado quente, e o equipamento foi posto em uma sala com temperatura de 26°C, controlada por arcondicionado, simulando o lado frio. Um par de termopares compõem o conjunto da câmara térmica, localizados no lado quente e frio, onde são registradas as temperaturas na superfície da alvenaria, conforme Figura 1(a).

Para a identificação da temperatura superficial do protótipo, durante o aquecimento na câmara térmica, e após, durante seu resfriamento, monitorou-se os efeitos dos processos de condução e de convecção por meio de termopares (medição de temperatura com contato) (CORTIZO, 2007). Os termopares foram colocados diretamente na superfície do protótipo, um na face exposta ao lado quente, e o outro na face oposta, exposta ao lado frio, fixados por tachas metálicas e cola, como mostrado também na Figura 1(b). Em seguida, os sensores foram ligados a um termômetro digital MT-1044-MINIPA®, programado para medir a temperatura da parede a cada minuto.

Para a realização do ensaio, o protótipo foi posicionado na câmara com a face do revestimento de argamassa de cimento Portland direcionado para a fonte de calor (o lado quente), e a face do revestimento de gesso posicionado no sentido oposto à fonte (o lado frio). O ciclo de aquecimento teve uma duração de 6 horas, onde foram realizados registros de temperatura nos termômetros a cada hora. Após o aquecimento, o

bloco foi retirado da câmara térmica, e foi acompanhado seu resfriamento durante 2 horas, também com registros de temperatura a cada 30 minutos.

Termopares

Lâmpada infravermelho 250W

Termopar

Figura 1 – (a) Câmara térmica; (b) Termopares fixados no protótipo e termômetro digital

Fonte: Autora

3 RESULTADOS

3.1 Processo de aquecimento e resfriamento

A partir dos dados obtidos pelos termopares no ensaio em câmara térmica, foi possível elaborar o Quadro 2, que apresenta as temperaturas medidas no lado frio a cada hora durante o aquecimento, e a cada meia hora durante o resfriamento.

Quadro 2 – Dados de temperatura obtidos pelos termopares

Aquecimento			Resfriamento			
Tempo (h:min)	Temperatura Lado Frio (°C)		Tempo (h:min)	Temperatura Lado Frio (°C)		
	GES-05	GES-10	,	GES-05	GES-10	
00:00	26,0	26,2	06:01	33,3	33,2	
01:00	26,6	26,6	06:31	33,0	33,6	
02:00	29,1	28,8	07:01	30,7	32,6	
03:00	30,8	30,4	07:31	29,7	31,3	
04:00	32,0	31,6	08:01	28,2	30,2	
05:00	32,8	32,3	-	-	-	
06:00	33,4	33,1	-	-	-	
Variação (°C)	7,4	6,9	Variação (°C)	-5,1	-3	

Fonte: Autora

TECSIC 2019

No processo de aquecimento com duração de seis horas, no lado frio, a amostra GES-05 apresentou uma variação de temperatura de 7,4°C, enquanto a amostra GES-10 apresentou uma variação de 6,9°C, resultando em uma diferença de 0,5°C, com isso, é possível afirmar que uma maior espessura promoveu um desempenho térmico melhor, dificultando a densidade de fluxo de calor através do protótipo de alvenaria. E, durante as duas horas de resfriamento, no lado frio, a amostra GES-05 apresentou uma variação total de temperatura de -5,1°C, alcançando uma perda maior de temperatura do que a amostra GES-10, que apresentou variação de -3°C, tais resultados apontam que a espessura maior do gesso, da amostra GES-10, confere ao revestimento parâmetros de resistência térmica e atraso térmico superiores ao da amostra GES-05, o que resulta numa maior dificuldade de penetração de calor no revestimento durante o aquecimento, no entanto, no processo de resfriamento este fato provoca uma menor densidade do fluxo de saída de calor do material.

3.2 Parâmetros térmicos calculados

Os parâmetros calculados, pelo método simplificado proposto pela NBR 15220-2 (ABNT, 2005) para a configuração do sistema estudado, estão presentes no Quadro 3, onde também foram especificados os valores máximos admissíveis determinados pelas NBR 15220-3 (ABNT, 2005) e NBR 15575-4 (ABNT, 2013), ambos considerando a cidade do Recife estando na zona bioclimática 8. Nos parâmetros de resistência térmica, capacidade térmica e atraso térmico, o protótipo GES-10 apresentou valores maiores que o protótipo GES-05, e no parâmetro transmitância térmica, o protótipo com GES-05 demonstrou um valor superior ao com GES-10.

Quadro 3 – Resultado dos cálculos dos parâmetros e valores máximos admissíveis pelas normas

Do siĝas atua	Amostra	Valor calculado	Zona Bio	04-4	
Parâmetro			NBR 15220-3	NBR 15575-4	Status
Transmitância Térmica (W/(m². K))	GES-05	2,33	11<26	11 < 2 7 00 % < 0.6	OK
U	GES-10	2,28	U ≤ 3,6	$U \le 3.7 \text{ se } \alpha \le 0.6$	OK
Capacidade Térmica (kJ/(m². K))	GES-05	93,02		em exigência Sem exigência	
СТ	GES-10	98,34	Sem exigencia		
Atraso Térmico (horas)	GES-05	2,54	φ ≤ 4,3 Sem exigência		ОК
φ	GES-10	2,70			ОК
Resistencia Térmica Total ((m². K)/W)	GES-05	0,44	Sem exigência	Sem exigência	OK
RT	GES-10	0,45			OK

Fonte: Autora

4 CONCLUSÕES

Na realização do ensaio em câmara térmica, o protótipo com GES-10 apresentou um desempenho térmico superior ao do GES-05, pois apresentou mais resistência ao fluxo de calor, indicada por temperaturas mais brandas na superfície do revestimento interno de gesso. Como a única diferença entre as duas amostras é a espessura do revestimento de gesso, sendo o protótipo com GES-10 meio centímetro mais espesso que o com GES-05, nesse ensaio observou-se que com o aumento da espessura do revestimento, ocorreu um melhor desempenho térmico da estrutura.

No processo de resfriamento, o protótipo com GES-05 apresentou uma perda de calor mais rápida do que com GES-10. Este fato ocorre devido à maior resistência do revestimento com 10mm de espessura ao fluxo de calor, provocando temperaturas mais baixas no lado interno da parede, promovendo também um balanceamento térmico mais vagaroso entre a superfície quente (revestimento externo de cimento Portland) e a superfície fria (revestimento interno de gesso).

Em relação aos parâmetros calculados pelo método simplificado, todos atenderam às condições limite especificadas pelas normas, e através destes, foi possível, mais uma vez, atestar um melhor

TECSIC 2019

2º Workshop de Tecnologia de Processos e Sistemas Construtivos 28 e 29 de agosto de 2019

comportamento térmico do protótipo com GES-10, que apresentou parâmetros superiores de resistência, capacidade e atraso térmicos, e baixo valor de transmitância térmica.

Para um aprofundamento maior da pesquisa e obtenção de resultados mais significativos, seria necessário um número maior de amostras, ou seja, não se limitar a espessuras de revestimento interno apenas de 5 e 10mm. Como também, a pesquisa se limita a zona bioclimática 8, pois os parâmetros de referência foram calculados para a cidade do Recife, que está englobada nesta zona, conforme as NBR 15220-3 (ABNT, 2005) e NBR 15575-4 (ABNT, 2013). Apesar de tais limitações, os resultados da pesquisa apontam que a espessura do revestimento interno de gesso pode sim influenciar maximizando o desempenho térmico de uma edificação.

5 REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15220-2: Desempenho térmico de edificações Parte 2: Método de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes construtivos. Rio de Janeiro, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15220-3: Desempenho térmico de edificações Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro, 2005.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15575-1: Edificações habitacionais – Desempenho. Parte 1: Requisitos gerais. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 15575-4: Edificações habitacionais – Desempenho. Parte 4: Sistemas de vedações verticais internas e externas. Rio de Janeiro, 2013.

CAMPOS, N. L. F.; NOGUEIRA, M. C. J. A.; LAMBERT, J. A.; DURANTE, L. C. Avaliação de desempenho térmico de edificação pública em Cuiabá, MT: Estudo de caso. Monografias Ambientais, Mato Grosso, v.7, n.7, p.1670-1688, 2012.

CORTIZO, E. C. Avaliação da técnica de termografia infravermelha para identificação de estruturas ocultas e diagnóstico de anomalias em: Ênfase em edificações do patrimônio histórico. 178 f. Tese de Doutorado – Engenharia Mecânica, Universidade Federal de Minas Gerais, Belo Horizonte, 2007.

LAMBERTS, R.; DUARTE, V. C. P. Desempenho térmico de edificações. UFSC: Apostila. Florianópolis, 7ª ed., 239 p., 2016.

TAVARES, Y. V. P.; LORDSLEEM JUNIOR, A. C.; SCHMITZ, I. B. T. A.; JOHN, V. M. Reaproveitamento do resíduo de gesso na execução de revestimento interno de vedação vertical. Ambiente Construído, Porto Alegre, v. 10, n. 1, p. 103-119, 2010.