Performance of concretes with partial replacement of cement by brick waste produced in different grinding times

Authors

DOI:

https://doi.org/10.46421/enarc.v8i00.3071

Keywords:

Ceramic waste, Pozzolanicity, Cement Portland, Concrete, Chlorides

Abstract

Portland cement-based products have a great potential to be used with industrial waste. This work aims to investigate the performance of concrete with the partial replacement of cement by ground brick waste (GBW). The pozzolanic activity of lime from two ceramic residues was evaluated, with different grinding times, 3000 and 20000 rotations. The analysis was complemented by the XRD test of cement pastes with the waste, 30, 40 and 50% of replacement, to verify the consumption of Portlandite. The performance of the concretes was verified through mechanical strength and chloride migration test. The result of pozzolanic activity to lime shows that the material cannot be considered pozzolanic. However, XRD analysis of cement pastes with GBW show a decrease in Portlandite in all pastes. The concretes showed good mechanical performance and high resistance to chloride penetration, superior to the reference concrete.

Author Biographies

Marina Cartaxo Braga Morais de Oliveira, Instituto Federal da Paraíba

Graduanda em Engenharia Civil.

Vitória Karoline Silva de Morais, Instituto Federal da Paraíba

Graduanda em Engenharia Civil.

Moacir Braz da Silva Neto, Instituto Federal da Paraíba

Graduando em engenharia civil.

References

ANDRADE, C.; BUJÁK, R. Cement and Concrete Research Effects of some mineral additions to Portland cement on reinforcement corrosion. Cement and Concrete Research, v. 53, p. 59–67, 2013.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12653 – Materiais pozolânicos – Especificação. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR NM 23 – Cimento portland e outros materiais em pó – Determinação de massa específica. Rio de Janeiro, 2001.

BELATO, M. Análise da geração de poluentes na produção de cimento Portland com o coprocessamento de resíduos industriais. Dissertação (Mestrado em Engenharia Mecânica) - Universidade Federal de Itajubá. Itajubá, 2013.

BENHELAL, E.; RASHID, M. I.; HOLT, C.; RAYSON, M. S.; BRENT, G.; HOOK, J. M.; STOCKENHUBER, M.; KENNEDY, E. M. The utilisation of feed and byproducts of mineral carbonation processes as pozzolanic cement replacements. Journal of Cleaner Production, v. 186, p. 499–513, 2018.

BENOSMAN, A. S.; MOULI, M.; TAIBI, H.; BELBACHIR, M.; SENHADJI, Y.; BEHLOULI, I.; HOUIVET, D. Mineralogical Study of Polymer-Mortar Composites with PET Polymer by Means of Spectroscopic Analyses. Materials Sciences and Applications, v. 03, n. 03, p. 139–150, 2012.

BERENGUER, R.; LIMA, N.; PINTO, L.; MONTEIRO, E.; POVOAS, Y.; OLIVEIRA, R.; LIMA, N. B. D. Cement-based materials: Pozzolanic activities of mineral additions are compromised by the presence of reactive oxides. Journal of Building Engineering, v. 41, n. February, p. 102358, 2021.

GARCIA, E.; CABRAL JUNIOR, M.; QUARCIONI, V. A.; CHOTOLI, F. F. Avaliação da atividade pozolânica dos resíduos de cerâmica vermelha produzidos nos principais polos ceramistas do Estado de S. Paulo. Cerâmica, v. 61, n. 358, p. 251–258, 2015.

HOPPE FILHO, J.; PIRES, C. A. O.; LEITE, O. D.; GARCEZ, M. R.; MEDEIROS, M. H. F. Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties. Construction and Building Materials, v. 296, 2021.

JERÔNIMO, V. L. Estudo da durabilidade de concretos com adição de resíduos da indústria de cerâmica vermelha com foco na corrosão de armaduras. Tese (Doutorado em Engenharia Civil) – Universidade Federal do Rio Grande do Sul. Porto Alegre, 2014.

KANNAN, D. M.; ABOUBAKR, S. H.; EL-DIEB, A. S.; REDA TAHA, M. M. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Construction and Building Materials, v. 144, p. 35–41, 2017.

KAVITHA, O.; SHANTHI, V.; ARULRAJ, G.; SIVAKUMAR, P. Fresh, micro- and macrolevel studies of metakaolin blended self-compacting concrete. Applied Clay Science, v. 114, p. 370-374, 2015.

KAZMIERCZAK, C. S.; ROSA, M.; ARNOLD, D. C. M. Influência da adição de filer de areia de britagem nas propriedades de argamassas de revestimento. Ambiente Construído, v. 16, n. 2, p. 7–19, 2016.

KULOVANÁ, T.; VEJMELKOVÁ, E.; KEPPERT, M.; ROVNANÍKOVÁ, P.; KERŠNER, Z.; ČERNÝ, R. Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Structural Concrete, v. 17, n. 1, p. 105–115, 2016.

L. NILSSON, M. H. NGO, AND O. E. GJØRV. High-performance repair materials for concrete structure in the port of Gothenburg, in Concrete under severe conditions 2: Environment and loading. Proceedings of the Second International Conference on Concrete Under Severe Conditions, vol. 2, 1998, p. 1193–1198.

LOPES, H. M. T.; PEÇANHA, A. C. C.; CASTRO, A. L. Considerations on the efficiency of Portland cement concrete mixtures based on the particle packing concept. Revista Materia, v. 25, n. 1, 2020.

MEDEIROS, M. H. F. Resíduo de cerâmica vermelha e fíler calcário em compósito de cimento Portland: efeito no ataque por sulfatos e na reação álcali-sílica. Matéria (Rio J.), Rio de Janeiro, 2016.

MEIRA, G. R.; FERREIRA, P. R. R.; JERÔNIMO, V. L.; CARNEIRO, A. M. P. Comportamento de concreto armado com adição de resíduos de tijolo cerâmico moído frente à corrosão por cloretos. Ambiente Construído, Porto Alegre, v. 14, n. 4, p. 33-52, 2014.

MO, KIM HUNG; ALENGARAM, U. JOHNSON; JUMAAT, MOHD ZAMIN; YAP, SOON POH; LEE, SIEW CHENG. Green concrete partially comprised of farming waste residues: A review. Journal of Cleaner Production, 2016.

MOINI, MOHAMADREZA; FLORES-VIVIAN, ISMAEL; AMIRJANOV, ADIL; SOBOLEV, KONSTANTIN. The optimization of aggregate blends for sustainable low cement concrete. Construction and Building Materials, v. 93, p. 627–634, 2015.

NEVILLE, A. M. Propriedades do concreto. 5. ed. Porto Alegre: Bookman, 2016.

NT BUILD 492. Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Measurement, p. 1–8, 1999.

OLORUNSOGO, F. T.; PADAYACHEE, N. Performance of recycled aggregate concrete monitored by durability indexes. Cement and Concrete Research, v. 32, n. 2, p. 179-185, 2002.

PACHECO-TORGAL, F.; JALALI, S. Compressive strength and durability properties of ceramic wastes based concrete. Materials and Structures, v. 44, p. 155–167, 2011.

PITARCH, A. M.; REIG, L.; TOMÁS, A. E.; LÓPEZ, F. J. Effect of Tiles, Bricks and Ceramic Sanitary-Ware Recycled Aggregates on Structural Concrete Properties. Waste and Biomass Valorization, v. 10, n. 6, p. 1779–1793, 2019.

RAY, Sourav; HAQUE, Mohaiminul; SOUMIC, Sakib Ahmed; MITA, Ayesha Ferdous; RAHMAN, MD Masnun; TANMOY, Bibhas B. Use of ceramic wastes as aggregates in concrete production: A review. Journal of Building Engineering Elsevier Ltd, 2021.

REBMANN, M. S., Robustez de concretos com baixo consumo de cimento Portland: desvios no proporcionamento e variabilidade granulométrica e morfológica dos agregados. Tese (Doutorado em Engenharia de Construção Civil e Urbana) – Universidade de São Paulo. São Paulo, 2016.

REIG, L.; TASHIMA, M. M.; SORIANO, L.; BORRACHERO, M. V.; MONZÓ, J.; PAYÁ, J. Alkaline activation of ceramic waste materials. Waste and Biomass Valorization, v. 4, n. 4, p. 729–736, 2013.

RIBEIRO, D. V.; PINTO, S. A.; AMORIM JÚNIOR, N. S.; ANDRADE NETO, J. S.; SANTOS, I. H. L.; MARQUES, S. L.; FRANÇA, M. J. S. Effects of binders characteristics and concrete dosing parameters on the chloride diffusion coefficient. Cement and Concrete Composites, v. 122, n. July 2020, 2021.

SANTOS, R. A. dos; MEIRA, G. R.; BEZERRA, W. V. D. de C. BRAGA, F. A. V.; PONTES, D. L. de. Use of numerical method for optimization of granulometric curves in eco-efficient concrete. Matéria Rio de Janeiro, v. 26, 2021.

SHI, X. XIE, N.; FORTUNE, K.; GONG, J. Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials, [S. l.], v. 30, p. 125–138, 2012.

TOLEDO FILHO, R. D.; GONÇALVES, J. P.; AMERICANO, B. B.; FAIRBAIRN, E. M. R. Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research, v. 37, n. 9, p. 1357–1365, 2007.

VEJMELKOVÁ, E.; KEPPERT, M.; ROVNANÍKOVÁ, P.; ONDRÁČEK, M.; KERŠNER, Z.; ČERNÝ, R. Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement and concrete composites, v. 34, n. 1, p. 55-61, 2012.

YUE, Y.; WANG, J. J.; BASHEER, P. A. M.; BAI, Y. Raman spectroscopic investigation of Friedel’s salt. Cement and Concrete Composites, v. 86, p. 306–314, 2018.

ZHAO, Y.; GAO, J.; LIU, C.; CHEN, X.; XU, Z. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. Journal of Cleaner Production, v. 242, p. 118521, 2020.

Published

2023-10-25

How to Cite

SANTOS, R. A. D., Oliveira, M. C. B. M. de ., Morais, V. K. S. de ., & Silva Neto, M. . B. da . (2023). Performance of concretes with partial replacement of cement by brick waste produced in different grinding times. ENCONTRO NACIONAL DE APROVEITAMENTO DE RESÍDUOS NA CONSTRUÇÃO, 8(00). https://doi.org/10.46421/enarc.v8i00.3071

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.