Reduced scale model of urban canyons and pavements

Pavement and street canyon model (PAVSCAM)

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.3967

Keywords:

Physical scaled model, Pavement and street canyon model (PAVSCAM), Cool pavements, Urban microclimate

Abstract

In the study of urban canyons, field data collection provides valuable information, but does not always allow the comprehension of more complex physical processes of surface interaction with the environment. On the other hand, simulation methods, despite being a simplification process, offer an alternative analysis for these phenomena. So, the aim of this study is to propose the construction of a physical model of an urban canyon in a tropical context in order to observe the microclimatic variables associated with four varieties of pavements. Characterization of the area and implantation site comprised the initial phase of the method. Next, the strengths and weaknesses of the simulation models were discussed. The results demonstrated that physical scale models have the potential to observe a variety of physical phenomena that occur in urban canyons, particularly surface temperature and winds. However, the limitations associated with the inertia of the materials, make physical scaled model unsuitable for energy balance investigations. Thus, the potential for mitigation measures and the consequences of public climate adaptation policies at the local level can be observed with greater precision, thereby facilitating the construction of climate-responsive structures in the real world.

Author Biographies

Luiz Fernando Kowalski, Federal University of São Carlos

Master in Urban Engineering at Federal University of São Carlos. Ph.D candidate in Urban Engineering at Federal University of São Carlos (São Carlos - SP, Brazil) and Physical Geography at University of Lisbon (Lisbon, Portugal).

Érico Masiero, Federal University of São Carlos

Ph.D in Urban Engineering at Federal University of São Carlos. Associate Professor at Federal University of São Carlos (São Carlos - SP, Brazil).

References

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS [ABNT]. NBR 12817: Concreto endurecido — Determinação do calor específico — Método de ensaio. Rio de Janeiro: ABNT, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS [ABNT]. NBR 9778 (2009): Argamassas e concretos endurecidos: Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro: ABNT, 2009.

ABOELATA, A. Reducing Outdoor Air Temperature, Improving Thermal Comfort, and Saving Buildings’ Cooling Energy Demand in Arid Cities-Cool Paving Utilization. Sustainable Cities and Society, p. 102762, 2021.

ASSIS, E. S. Aplicações da climatologia urbana no planejamento da cidade: revisão dos estudos brasileiros. Revista de Urbanismo e Arquitetura, v. 7, n.1. 2006. Disponível em: http://www.portalseer.ufba.br/index.php/rua/article/viewArticle/3149. Acesso em: 28.06.2021.

BALÁZS, B.; UNGER, J.; GÁL, T.; SÜMEGHY, Z.; GEIGER, J; SZEGEDI, S. Simulation of the mean urban heat island using 2D surface parameters: empirical modeling, verification and extension. Meteorological Applications, v. 16, n.3, pp. 275-287, 2009.

CEPAGRI. Clima dos municípios paulistas. Disponível em: https://www.cpa.unicamp.br/outrasinformacoes/clima_muni_172.html. Acesso em 04 de maio de 2018.

CHEN, G.; WANG, D.; WANG, Q.; LI, Y.; WANG, X.; HANG, J., ... WANG, K. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Science of The Total Environment, 726, 138147, 2020 [2]

CHEN, J.; CHU, R.; WANG, H.; ZHANG, L.; CHEN, X.; DU, Y. Alleviating urban heat island effect using high-conductivity permeable concrete pavement. Journal of Cleaner Production, 237, 117722, 2019.

CHEN, T.; PAN, H.; LU, M.; HANG, J.; LAM, C. K. C.; YUAN, C.; PEARLMUTTER, D. Effects of tree plantings and aspect ratios on pedestrian visual and thermal comfort using scaled outdoor experiments. Science of the total environment, 801, 149527, 2021.

CHEN, T.; YANG, H.; CHEN, G.; LAM, C. K. C.; HANG, J.; WANG, X.; … LING, H. Integrated impacts of tree planting and aspect ratios on thermal environment in street canyons by scaled outdoor experiments. Science of The Total Environment, 142920, 2020. DOI:10.1016/j.scitotenv.2020.1429 [1]

CLIMATEMPO. Climatologia de Engenheiro Coelho. Disponível em: https://www.climatempo.com.br/ climatologia/2290/engenheirocoelho-sp. Acesso em 02 abr. 2022.

CUI, D.; ZHANG, Y.; LI, X.; YUAN, L.; MAK, C. M.; KWOK, K. Effects of different vertical façade greenery systems on pedestrian thermal comfort in deep street canyons. Urban Forestry & Urban Greening, 72, 127582, 2022.

DAEE. Banco de dados hidrológicos. Disponível em: http://www.hidrologia.daee.sp.gov.br/. Acesso em 02 abr. 2019.

ERELL, E.; PEARLMUTTER, D.; WILLIAMSON, T. Urban Microclimate: Designing the Spaces between Buildings. London: Earthscan, 2011.

IBGE. Área territorial oficial. Disponível em: https://cidades.ibge.gov.br/brasil/sp/engenheirocoelho/panorama. Acesso em 10 de março de 2023.

KANDA, M. et al. Comprehensive outdoor scale model experiments for urban climate (COSMO). In: Proceedings of the 6th International Conference on Urban Climate, Göteborg, Sweden. 2006. p. 12-16.

KANDA, M. Progress in the scale modeling of urban climate: Review. Theoretical and Applied Climatology, v.84, p.23-33, 2006.

KOWALSKI, L. F. Influência do albedo de pavimentos no campo térmico de cânions urbanos: estudo de modelo em escala reduzida. 2019. 124f. Dissertação (Mestrado em Engenharia Urbana) - Universidade Federal de São Carlos, São Carlos – SP, 2019.

KOWALSKI, L. F.; MASIERO, E. Envelhecimento de pavimentos de concreto pigmentado e consequências sobre o albedo. Revista de Arquitetura IMED, Passo Fundo, v. 10, n. 1, p. 126-147, janeiro-junho, 2021. DOI: https://doi.org/10.18256/2318-1109.2021.v10i1.4411

KOWALSKI, L. F.; SILVA, T. M. da.; SILVA, V. H. N.; RÍSPOLI, I. A. G.; MASIERO, E. Permeabilidade e variação do albedo de pavimentos frios em função do teor de umidade. Revista de Arquitetura IMED, Passo Fundo, v. 11, n. 1, p. 39-55, janeiro-junho, 2022. DOI: https://doi.org/10.18256/2318-1109.2022.v11i1.4412 [1]

KOWALSKI, L. F.; AMANCIO, D. C.; VIANA, J. F.; SILVA, F. P.; TEIXEIRA, I.; MASIERO, E. Evaluation of thermal performance of urban asphalt pavements with rubber incorporation. In: PLEA 2022, 2022, Santiago - Chile. Will Cities Survive?. 2022. p. 194-198. [2]

KRÜGER, E. L.; PEARLMUTTER, D. The effect of urban evaporation on building energy demand in an arid environment. Energy and Buildings, v.40, n.11, p. 2090-2098, 2008.

KRÜGER, E.; PEARLMUTTER, D.; RASIA, F. Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment. Applied energy, v. 87, n. 6, p. 2068-2078, 2010.

LYONS, T. J. Comments on canopy geometry and the nocturnal urban heat island: comparisons of scale model and field observations. J. Climatol, v. 3, p.95-101, 1983.

MATIAS, M.; LOPES, A. Surface Radiation Balance of Urban Materials and Their Impact on Air Temperature of an Urban Canyon in Lisbon, Portugal. Applied Sciences, v.10, n. 6: 2193, 2020.

NAKATA-OSAKI, C. M. Adaptação de um modelo simplificado para verificação da influência da geometria urbana na formação de ilha de calor noturna. 2016. 132p. Tese (Doutorado em Engenharia Urbana). Departamento de Engenharia Civil. Pós-Graduação em Engenharia Urbana. Universidade Federal de São Carlos, São Carlos, 2016.

NUNEZ, M.; OKE, T. R. The energy balance of an urban canyon. Journal of Applied Meteorology and Climatology, v.16, n.1, p.11-19, 1977.

OKE, T. R. Canyon Geometry and the Nocturnal Urban Heat Island: comparison of scale model and field observations. Journal of Climatology, v. 1, n. 1/4, p. 237-254, 1981.

OKE, T. R. Boundary layer climates. 2.ed. Londres: Taylor and Francis, 1987.

PEARLMUTTER, D.; BERLINER, P.; SHAVIV, E. Physical modeling of pedestrian energy exchange within the urban canopy. Building & Environment, v.41, n.6, p.783-795, 2006.

SANTAMOURIS, M.; XIRA, F.; GAITANI, N.; SPANOU, A.; SALIARI, M.; VASSILAKOPOULOU, K. Improving the Microclimate in a Dense Urban Area Using Experimental and Theoretical Techniques. – The case of Marousi, Athens. Int. Journal of Ventilation, v.11, n.1, p.1–16, 2012. DOI: https://doi.org/10.1080/14733315.2012.11683966

SVENSSON, M.; ELIASSON, I.; HOLMER, B. A GIS based empirical model to simulate air temperature variations in the Göteborg urban area during the night. Climate Research, v.22, n. 3, pp. 215-226, 2002.

WANG, D.; SHI, Y.; CHEN, G.; ZENG, L.; HANG, J.; WANG, Q. Urban thermal environment and surface energy balance in 3D high-rise compact urban models: Scaled outdoor experiments. Building and Environment, v.205, n.108251, 2021.

Published

26/10/2023

How to Cite

KOWALSKI, L. F.; MASIERO, Érico. Reduced scale model of urban canyons and pavements: Pavement and street canyon model (PAVSCAM). In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.3967. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/3967. Acesso em: 19 may. 2024.

Issue

Section

2. Clima e Planejamento Urbano

Most read articles by the same author(s)