Life cycle assessment (LCA) and environmental impact of alkali-activated materials: A systematic literature review

Autores

  • Ivo Carvalho Universidade Federal do Ceará
  • Heloina Nogueira da Costa Universidade Federal do Ceará
  • Antônio Eduardo Cabral Universidade Federal do Ceará

Palavras-chave:

Avaliação do ciclo de vida, Materiais álcali-ativados, Emissão de CO2, Revisão sistemática de literatura, Impactos ambientais

Resumo

Os materiais álcali-ativados têm crescido como um ligante eco eficiente alternativo que pode gerar redução de impactos ambientais acarretados pela produção de ligantes convencionais. Apesar disso, estudos de análises de impactos ambientais em materiais álcali-ativados ainda não são tão difundidos. O artigo apresenta uma revisão sistemática de literatura a respeito do uso do método de avaliação do ciclo de vida (ACV) para avaliar os impactos ambientais de materiais álcali-ativados. Uma metodologia de pesquisa foi proposta visando analisar artigos diretamente ligados ao tema e organizar dados relacionados aos anos de publicação, análises de co-ocorrência de palavras-chave, co-autoria e países mais ativos no estudo do assunto. Além disso, os tipos de estudos mais propostos em análises do ciclo de vida foram identificados e a emissão de CO2 de diversos tipos de materiais álcali-ativados também foi discutida.

Referências

ABDULKAREEM, M.; HAVUKAINEN, J.; HORTTANAINEN, M. How environmentally sustainable are fibre reinforced alkali-activated concretes? Journal of cleaner production, v. 236, 2019. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069596641&doi=10.1016%2fj.jclepro.2019.07.076&partnerID=40&md5=f38e5e307c3a233d6d5cd8eb88da4c1d>..

ABDULKAREEM, M.; HAVUKAINEN, J.; NUORTILA-JOKINEN, J.; HORTTANAINEN, M. Environmental and economic perspective of waste-derived activators on alkali-activated mortars. Journal of cleaner production, v. 280, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093662896&doi=10.1016%2fj.jclepro.2020.124651&partnerID=40&md5=c0c43f6b2dda65b97f6071161d11a70a>..

ALHASSAN, M.; ALKHAWALDEH, A.; BETOUSH, N.; et al. Life Cycle Assessment of the Sustainability of Alkali-Activated Binders. Biomimetics, v. 8, n. 1, 2023. Disponível em: <http://dx.doi.org/10.3390/biomimetics8010058>..

ARCE, A.; LE GALLIARD, C.; KOMKOVA, A.; PAPANICOLAOU, C. G.; TRIANTAFILLOU, T. C. Optimal design of ferronickel slag alkali-activated mortar for repair exposed to high thermal load. Materials and Structures/Materiaux et Constructions, v. 56, n. 2, 2023. Springer Science and Business Media B.V. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148485390&doi=10.1617%2fs11527-023-02117-9&partnerID=40&md5=80154b22335dabf8934efb970e79b385>..

BAJPAI, R.; CHOUDHARY, K.; SRIVASTAVA, A.; SANGWAN, K. S.; SINGH, M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. Journal of cleaner production, v. 254, 2020. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85078564456&doi=10.1016%2fj.jclepro.2020.120147&partnerID=40&md5=9dc939caa25f1c46332d749df915790b>..

BATUECAS, E.; RAMÓN-ÁLVAREZ, I.; SÁNCHEZ-DELGADO, S.; TORRES-CARRASCO, M. Carbon footprint and water use of alkali-activated and hybrid cement mortars. Journal of cleaner production, v. 319, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112412682&doi=10.1016%2fj.jclepro.2021.128653&partnerID=40&md5=dccc2f5198a6e175469ac3df07f79c55>..

BIANCO, I.; AP DAFYDD TOMOS, B.; VINAI, R. Analysis of the environmental impacts of alkali-activated concrete produced with waste glass-derived silicate activator – A LCA study. Journal of cleaner production, v. 316, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110740292&doi=10.1016%2fj.jclepro.2021.128383&partnerID=40&md5=5ce373e9fb920920badb6977587df700>..

BIERNACKI, J. J.; BULLARD, J. W.; SANT, G.; et al. Cements in the 21st Century: Challenges, Perspectives, and Opportunities. Journal of the American Ceramic Society, v. 100, n. 7, p. 2746–2773, 2017. Disponível em: <http://dx.doi.org/10.1111/jace.14948>..

CHOTTEMADA, P. G.; KAR, A.; KARA DE MAEIJER, P. Environmental Impact Analysis of Alkali-Activated Concrete with Fiber Reinforcement. Infrastructures, v. 8, n. 4, 2023. MDPI. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85153705247&doi=10.3390%2finfrastructures8040068&partnerID=40&md5=9b887be11432720b2b8e9068b625b201>..

DAL POZZO, A.; CARABBA, L.; BIGNOZZI, M. C.; TUGNOLI, A. Life cycle assessment of a geopolymer mixture for fireproofing applications. International Journal of Life Cycle Assessment, v. 24, n. 10, p. 1743–1757, 2019. Springer Verlag. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063356612&doi=10.1007%2fs11367-019-01603-z&partnerID=40&md5=df8dc5de9dd27946b7f5e95fec3dd5a2>..

DUXSON, P.; PROVIS, J. L.; LUKEY, G. C.; VAN DEVENTER, J. S. J. The role of inorganic polymer technology in the development of “green concrete”. Cement and Concrete Research, v. 37, n. 12, p. 1590–1597, 2007. Elsevier BV. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0008884607002001>..

FARIDMEHR, I.; NEHDI, M. L.; NIKOO, M.; HUSEIEN, G. F.; OZBAKKALOGLU, T. Life-cycle assessment of alkali-activated materials incorporating industrial byproducts. Materials, v. 14, n. 9, 2021. MDPI AG. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105788444&doi=10.3390%2fma14092401&partnerID=40&md5=6544c0bb422d74ca6bf73120b8264ff4>..

FERNANDO, S.; GUNASEKARA, C.; LAW, D. W.; et al. Life cycle assessment and cost analysis of fly ash–rice husk ash blended alkali-activated concrete. Journal of environmental management, v. 295, 2021. Academic Press. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108889057&doi=10.1016%2fj.jenvman.2021.113140&partnerID=40&md5=c38c5912e121b666a2065982f4fdcdbb>..

FERNANDO, S.; GUNASEKARA, C.; LAW, D. W.; et al. Environmental evaluation and economic analysis of fly ash-rice husk ash blended alkali-activated bricks. Environmental impact assessment review, v. 95, 2022. Elsevier Inc. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85127219705&doi=10.1016%2fj.eiar.2022.106784&partnerID=40&md5=8df5fdd2119cf95b1924c9d1c3ea1037>..

DE GASPERI, J.; HOLTHUSEN, D.; HOWES, M. F. D.; et al. Temporal dynamics of rheological properties of metakaolin-based geopolymers: Effects of synthesis parameters. Construction and Building Materials, v. 289, p. 123145, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0950061821009053>..

HABERT, G.; MILLER, S. A.; JOHN, V. M.; et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth & Environment, v. 1, n. 11, p. 559–573, 2020. Nature Publishing Group. Disponível em: <https://www.nature.com/articles/s43017-020-0093-3>. Acesso em: 27/8/2023.

IRSHIDAT, M. R.; AL-NUAIMI, N.; RABIE, M. Sustainable utilization of waste carbon black in alkali-activated mortar production. Case Studies in Construction Materials, v. 15, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117721702&doi=10.1016%2fj.cscm.2021.e00743&partnerID=40&md5=66edf1e70eb93fa43a238c3af7bb2fa3>..

KOMKOVA, A.; HABERT, G. Environmental impact assessment of alkali-activated materials: Examining impacts of variability in constituent production processes and transportation. Construction and Building Materials, v. 363, 2023. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142668423&doi=10.1016%2fj.conbuildmat.2022.129032&partnerID=40&md5=e5e70d20d418f691d119b59677576464>..

KUMAR DAS, S.; ADEDIRAN, A.; RODRIGUE KAZE, C.; MOHAMMED MUSTAKIM, S.; LEKLOU, N. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Construction and Building Materials, v. 345, p. 128341, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0950061822020013>..

KVOČKA, D.; LEŠEK, A.; KNEZ, F.; et al. Life cycle assessment of prefabricated geopolymeric façade cladding panels made from large fractions of recycled construction and demolition waste. Materials, v. 13, n. 18, 2020. MDPI AG. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091801475&doi=10.3390%2fMA13183931&partnerID=40&md5=f90d3df83b3f5deda138df1fede545f9>..

LONGHI, M. A.; RODRÍGUEZ, E. D.; WALKLEY, B.; ZHANG, Z.; KIRCHHEIM, A. P. Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation. Composites Part B Engineering, v. 182, p. 107671, 2020. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1359836819344014>..

MAHMOODI, O.; SIAD, H.; LACHEMI, M.; ŞAHMARAN, M. Comparative life cycle assessment analysis of mono, binary and ternary construction and demolition wastes-based geopolymer binders. Materials Today: Proceedings, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2214785323032996>..

MORAES, J. C. B.; BATISTA, J. P. B.; MORAES, M. J. B.; et al. Durability to chemical attacks and life cycle assessment of alkali-activated binders based on blast furnace slag and sugar cane straw ash. Journal of Building Engineering, v. 76, 2023. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164300861&doi=10.1016%2fj.jobe.2023.107261&partnerID=40&md5=be6704ac94898201d1b9a2b4145466ee>..

NGUYEN, L.; MOSESON, A. J.; FARNAM, Y.; SPATARI, S. Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders. Journal of cleaner production, v. 185, p. 628–645, 2018. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044863970&doi=10.1016%2fj.jclepro.2018.02.247&partnerID=40&md5=f64947be0a56fb0249008e4ebf64c93d>..

PATRISIA, Y.; LAW, D. W.; GUNASEKARA, C.; WARDHONO, A. Life cycle assessment of alkali-activated concretes under marine exposure in an Australian context. Environmental impact assessment review, v. 96, 2022. Elsevier Inc. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131460543&doi=10.1016%2fj.eiar.2022.106813&partnerID=40&md5=13e3e7051bf5089578d6626ae05cf867>..

RAMAGIRI, K. K.; CHINTHA, R.; BANDLAMUDI, R. K.; KARA DE MAEIJER, P.; KAR, A. Cradle-to-gate life cycle and economic assessment of sustainable concrete mixes—alkali-activated concrete (Aac) and bacterial concrete (bc). Infrastructures, v. 6, n. 7, 2021. MDPI. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111386607&doi=10.3390%2finfrastructures6070104&partnerID=40&md5=c043345f93ebaabf4f9c2b9cc7bb0e98>..

RAMAGIRI, K. K.; KAR, A. Environmental impact assessment of alkali-activated mortar with waste precursors and activators. Journal of Building Engineering, v. 44, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121719969&doi=10.1016%2fj.jobe.2021.103391&partnerID=40&md5=d806b23ae956e93a7fc060de0d317113>..

RAMAGIRI, K. K.; KARA DE MAEIJER, P.; KAR, A. High-Temperature, Bond, and Environmental Impact Assessment of Alkali-Activated Concrete (AAC). Infrastructures, v. 7, n. 9, 2022. MDPI. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85138611497&doi=10.3390%2finfrastructures7090119&partnerID=40&md5=1951a8cae114ec1f29d7c04366779921>..

ROBAYO-SALAZAR, R.; MEJÍA-ARCILA, J.; MEJÍA DE GUTIÉRREZ, R.; MARTÍNEZ, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Construction and Building Materials, v. 176, p. 103–111, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0950061818310845>..

SALDANHA, R. B.; CAICEDO, A. M. L.; DE ARAÚJO, M. T.; et al. Potential use of iron ore tailings for binder production: A life cycle assessment. Construction and Building Materials, v. 365, 2023. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144597420&doi=10.1016%2fj.conbuildmat.2022.130008&partnerID=40&md5=f89cba810cbb1dfb646ecf2844c68f1a>..

SANDANAYAKE, M.; LAW, D.; SARGENT, P. A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements. Building and environment, v. 210, 2022. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121700155&doi=10.1016%2fj.buildenv.2021.108702&partnerID=40&md5=98310e062730be401422a4ae88d69d24>..

SARKKINEN, M.; KUJALA, K.; GEHÖR, S. Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings. Journal of Sustainable Mining, v. 18, n. 3, p. 115–126, 2019. Central Mining Institute in Katowice. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067625613&doi=10.1016%2fj.jsm.2019.04.001&partnerID=40&md5=7dd08a9ee7a2d59b860a5d41218b858d>..

SCRIVENER, K. L.; JOHN, V. M.; GARTNER, E. M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, v. 114, p. 2–26, 2018. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0008884618301480>..

TANG, W.; PIGNATTA, G.; SEPASGOZAR, S. M. E. Life-cycle assessment of fly ash and cenosphere-based geopolymer material. Sustainability (Switzerland), v. 13, n. 20, 2021. MDPI. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117173658&doi=10.3390%2fsu132011167&partnerID=40&md5=e7bba5a9bc44088187586766550b381d>..

TINOCO, M. P.; DE MENDONÇA, É. M.; FERNANDEZ, L. I. C.; et al. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. Journal of Building Engineering, v. 52, p. 104456, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2352710222004697>..

WITZLEBEN, S. Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber. Polymers, v. 14, n. 15, 2022. MDPI. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85137107720&doi=10.3390%2fpolym14153191&partnerID=40&md5=8404b8d39b7d03c26db78a46a2955cb6>..

ZAHMAK, A.; ABDALLAH, M.; JARAH, B.; ARAB, M. G. Environmental performance of alkali-activated binders for ground improvement. Transportation Geotechnics, v. 31, 2021. Elsevier Ltd. Disponível em: <https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112474252&doi=10.1016%2fj.trgeo.2021.100631&partnerID=40&md5=864fb62fd266f11fe97a6840c10e9d33>..

Downloads

Publicado

2024-01-15

Como Citar

Carvalho, I., Nogueira da Costa, H., & Cabral, A. E. (2024). Life cycle assessment (LCA) and environmental impact of alkali-activated materials: A systematic literature review. SIMPÓSIO BRASILEIRO DE CIÊNCIA DO CIMENTO, 1(00), 1–8. Recuperado de https://eventos.antac.org.br/index.php/sbcc/article/view/3654

Edição

Seção

Avaliação do ciclo de vida da produção de cimentos

Artigos Semelhantes

<< < 1 2 3 4 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.