Analysis of natural vetilation in classrooms:

CFD Simulations

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.3744

Keywords:

natural ventilation, air exchange rates/hour, CFD simulatio, classrooms

Abstract

Natural ventilation in buildings is an important strategy for passive thermal accommodation, often offering thermal comfort and healthy air for users, especially in regions with hot and humid climates, such as Brazil. In addition, after the COVID-19 pandemic, the extension of natural ventilation and air quality in indoor spaces, especially in teaching environments, has been very welcoming. Therefore, the objective of this article is to evaluate the influence of the opening parameter on the indoor airflow velocity and on the air exchange rates/hour in an existing classroom at the State University of Maringá. The methodology used was CFD simulations and the reference case and 4 cases with design changes in the openings were analyzed. Among the main results, it should be noted that natural ventilation in the reference case and in cases 1 and 2 are satisfactory and insufficient to maintain indoor air quality. Similarly, it can be seen that the changes in the other cases, which allow cross ventilation in the environment, showed better results regarding the speed and amount of air flow in the classroom, also increasing the air renewal rates/hour.

Author Biographies

Marieli Azoia Lukiantchuki, Universidade Estadual de Maringá

Doutorado em Arquitetura e Urbanismo pelo Instituto de Arquitetura e Urbanismo de São Carlos da Universidade de São Paulo (IAU/USP). Professora adjunta da Universidade Estadual de Maringá (PR), do Departamento de Arquitetura e Urbanismo, e professora do Programa Associado de Pós-Graduação em Arquitetura e Urbanismo do UEM/UEL.

Ana Clara de Almeida Xavier, Instituto de Arquitetura de São Carlos, Universidade de São Paulo

Pesquisadora de Mestrado no Instituto de Arquitetura e Urbanismo da Universidade de São Paulo (IAU USP). 

References

ABUHEGAZY, M.; TALAAT, K.; ANDEROGLU, O.; POROSEVA, S. V. Numerical investigation of aerosol transport in a classroom with relevance to COVID-19. Physics of Fluids, 32, 103311 (2020). Disponível em: <https://aip.scitation.org/doi/full/10.1063/5.0029118>. Acesso em: 30 mai 2021.

ALLARD, F. Natural ventilation in buildings: a design handbook. London: James & James, 1998.

ALLEN, J.; SPENGLER, J.; JONES, E.; CEDENO-LAURENT, J. 5-step guide to checking ventilation rates in classrooms. Harvard Healthy Buildings Program, 2020.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS. ASHRAE handbook 55: fundamentals. Atlanta: ASHRAE, 2005.

ASHRAE. Guia para reabertura de escolas e universidades. Brasília Student Branch. 2020. Disponível em: <https://conforlab.com.br/wp-content/uploads/2020/10/Guia-ASHRAE-2020.pdf> Acesso em: 28 mar 2021.

BITTENCOURT, L. S.; CÂNDIDO, C. Introdução a ventilação natural. Maceió: EDUFAL, 2010.

BRASIL. Ministério da Saúde. Orientações para retomada segura das atividades presenciais nas escolas de educação básica no Contexto da Pandemia da COVID-19. 2020. Disponível em: <https://antigo.saude.gov.br/images/pdf/2020/September/18/doc-orientador-para-retomada-segura-das-escolas-no-contexto-da-covid-19.pdf>. Acesso em: 22 mai 2021.

CALAUTIT, J. K.; HUGHES, B. R. Wind tunnel and CFD study of the natural ventilation performance of a commercial multi-directional wind tower. Journal of Wind Engineering & Industrial Aerodynamics 2014; 125: 189-194.

CANADIAN COMMITTEE ON INDOOR AIR QUALITY (CCIAQ). Addressing COVID-19 in buildings. Module 15. 2020. Disponível em: <https://iaqresource.ca/wp-content/uploads/2020/09/CCIAQB-Module15-Eng.pdf>. Acesso em: 19 jun 2021.

CÂNDIDO, C. M. Ventilação natural e códigos de obras: uma análise das tipologias de aberturas nos edifícios de escritório em Maceió/AL. 2006. 194 f. Dissertação (Mestrado em Dinâmicas do Espaço Habitado) - Universidade Federal de Alagoas, Maceió, 2006.

CÂNDIDO, C.; DEAR, R. J. de; LAMBERTS, R.; BITTENCOURT, L. Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Building and environment, v. 45, p. 222-229. 2010.

CEN (European Committee for Standardization), EN 15251 2007, Criteria for the Indoor Environment Including Thermal, Indoor Air Quality, Light and Noise. European Committee for Standardization, Brussels, Belgium.

CHO, H.; CABRERA, D.; SARDY, S.; KILCHHERR, R.; YILMAZ, S.; PATEL, M.K. Evaluation of performance of energy efficient hybrid ventilation system and analysis of occupants’ behavior to control windows. Building and Environment. 2021. Disponível em <https://www.sciencedirect.com/science/article/pii/S0360132320308015> Acesso em: 06 mai 2021.

COST. Cost Action 14: Recommendations on the use of CFD in predicting pedestrian wind environment. Bruxelas: COST, 2004.

DENG, S.; ZOU, B.; LAU, J. The adverse associations of classrooms’ indoor air quality and thermal comfort conditions on students’ illness related absenteeism between heating and non-heating seasons—A pilot study. International journal of environmental research and public health, 2021, 18.4: 1500.

EUROPEAN CENTRE FOR DISEASE PREVENTION AND CONTROL (ECDC). Heating, ventilation and air-conditioning systems in the context of COVID-19. 2020. Disponível em: <https://www.ecdc.europa.eu/en/publications-data/heating-ventilation-air-conditioning-systems-covid-19>. Acesso em: 26 mar 2021.

FEDERATION OF EUROPEAN HEATING, VENTILATION AND AIR CONDITIONING ASSOCIATIONS (REHVA). How to operate and use building services in order to prevent the spread of the coronavirus disease (COVID-19) virus (SARS-CoV-2) in workplaces. 2020. Disponível em: <https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID9_guidance_document_ver2_20200403_1.pdf>. Acesso em: 11 jun 2021.

FERREIRA, C. D. A. Eficácia das técnicas de climatização natural em um prédio de salas de aula: estudo de caso campus UFSM–CS. 2019. Dissertação (Mestrado no Programa de Pós-Graduação em Engenharia Civil) - Universidade Federal de Santa Maria, Santa Maria, 2019.

GIVONI, B. Man, climate and architecture. London: Applied Science Publishers, 1976.

GRATIA E.; BRUYERE I.; DE HERDE A. How to use natural ventilation to cool narrow office buildings. Building and Environment. 2004. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0360132304000757>. Acesso em: 26 mar 2021.

HARGREAVES, D. M.; MORVAN, H. P.; WRIGHT, N. G. Validation of the volume of fluid method for free surface calculation: the broad-crested weir. Engineering Applications of Computational Fluid Mechanics 2014; 1 (2): 136-146.

HARRIES, A. Notas de aula. In: Workshop: CFX – FAU/USP. São Paulo, 2005.

INSTITUTO NACIONAL DE METEOROLOGIA (INMET). Disponível em: <http://www.inmet.gov.br/portal/>. Acesso em: dez. 2018.

ISO, ISO 7730, Moderate Thermal Environment—Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort. International Organization for Standardization, 2005.

KOPPEN, W. Climatologia: com um estúdio de los climas de la tierra. México: Fondo de Cultura Economia, 1948.

LAMBERTS, R.; DUTRA, L.; PEREIRA, F. O. R. Eficiência energética na arquitetura. São Paulo: PW, 2014.

LI, Y.; LEUNG, G. M.; TANG, J. W.; YANG, X.; CHAO, C. Y.; LIN, J. Z.; LU, J. W.; NIELSEN, P. V.; NIU, J.; QIAN, H.; SLEIGH, A. C.; SU, H. J.; SUNDELL, J.; WONG, T.W.; YUEN, P. L. Role of ventilation in airborne transmission of infectious agents in the built environment - a multidisciplinary systematic review. Indoor Air. 2007 Feb;17(1):2-18. DOI: <10.1111/j.1600-0668.2006.00445.x>.

MELIKOV, A. K. COVID-19: Reduction of airborne transmission needs paradigm shift in ventilation. Building and environment, v. 186, n. 107336, 2020. DOI: <https://doi.org/10.1016/j.buildenv.2020.107336>.

MINISTÉRIO DA SAÚDE. Orientações para retomada segura das atividades nas escolas de educação básica no contexto da pandemia da covid-19. Brasília, 2020.

MORAWSKA, L.; MILTON, D. K. Reply to Chagla et al and Thomas. Clinical Infectious Diseases, v. 73, i. 11, 2021, p. 3983-3984. DOI: <https://doi.org/10.1093/cid/ciaa1121>.

NICO-RODRIGUES, E. A. Influência da janela no desempenho térmico de ambientes ventilados naturalmente. PhD Thesis. Tese (Doutorado em arquitetura e urbanismo). Universidade del Bío-Bio. Bío-Bio: Chile, 2015.

PROJETANDO EDIFICAÇÕES ENERGETICAMENTE EFICIENTES - PROJETEEE. Disponível em: <http://projeteee.mma.gov.br/>. Acesso em: dez. 2018 e mar. 2023.

PULIMENO, M.; PISCITELLI, P.; COLAZZO, S.; COLAO, A.; MIANI, A. Indoor air quality at school and students’ performance: Recommendations of the UNESCO Chair on Health Education and Sustainable Development & the Italian Society of Environmental Medicine (SIMA). Health Promotion Perspectives, 2020, 10.3: 169.

QIAN, H.; LI, Y. G.; SETO, W. H.; CHING, P.; CHING, W. H.; SUN, H. Q. Natural ventilation for reducing airborne infection in hospitals. Building and Environment, v. 45, n. 3, p. 559-565, 2010.

SCHOOLS FOR HEALTH. JONES, E.; YOUNG, A.; CLEVENGER, K.; SALIMIFARD, P.; WU, E.; LUNA, M. L.; LAHVIS, M.; LANG, J.; BLISS, M.; AZIMI, P.; CEDENO-LAURENT, J.; WILSON, C.; ALLEN, J. Healthy Schools: Risk Reduction Strategies for Reopening Schools. Harvard T.H. Chan School of Public Health Healthy Buildings program. June, 2020. Disponível em: <https://schools.forhealth.org/wp-content/uploads/sites/19/2020/06/Harvard-Healthy-Buildings-Program-Schools-For-Health-Reopening-Covid19-June2020.pdf>. Acesso em: 23 de maio de 2022.

SOFTWARE ANSYS® WORKBENCH Academic Research Mechanical, Release 15.0.

SOFTWARE AutoCAD®. Autodesk®, 2018.

SOFTWARE EPVIEW 1.4 (2012). Elaborado por: RORIZ, M.

SOHRABI, C.; ALSAFI, Z.; O'NEILL, N.; KHAN, M.; KERWAN, A.; AL-JABIR, A.; IOSIFIDIS, C.; AGHA, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International journal of surgery, v. 76, p. 71-76, 2020.

TOLEDO, E. Ventilação natural das habitações. Maceió: Ed. Edufal, 1999.

UMWELTBUNDESAMT (UBA) –. Richtig Lüften in Schulen. Disponível em: <https://www.umweltbundesamt.de/richtig-lueften-in-schulen#konnen-mobile-luftreiniger-in-klassenraumen-helfen>. Acesso em: 18 de mar. de 2021.

VAN DIJKEN, F. Guidance for Schools. REHVA Federation of European Heating, Ventilation and Air Conditioning

Associations. 2020.

WORLD HEALTH ORGANIZATION. Considerations for school-related public health measures in the context of COVID-19. Annex to Considerations in adjusting public health and social measures in the context of COVID-19. Setembro, 2020. Disponível em: <https://www.who.int/publications-detail/risk->. 2020b.

WORLD HEALTH ORGANIZATION. Coronavirus disease (COVID-19). (2020). Disponível em: <https://www.who.int/health-topics/coronavirus#tab=tab_1>. 2020a.

ZEMOURI, C.; AWAD, S. F.; VOLGENANT, C. M. C.; CRIELAARD, W.; LAHEIJ, A. M. G. A.; DE SOET, J. J. Modeling of the transmission of coronaviruses, measles virus, influenza virus, Mycobacterium tuberculosis, and Legionella pneumophila in dental clinics. Journal of dental research, v. 99, n. 10, p. 1192-1198, 2020. DOI: <10.1177/0022034520940288>.

Published

26/10/2023

How to Cite

LUKIANTCHUKI, M. A. .; XAVIER, A. C. de A. Analysis of natural vetilation in classrooms:: CFD Simulations. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.3744. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/3744. Acesso em: 20 may. 2024.

Issue

Section

3. Conforto Térmico

Most read articles by the same author(s)