Influence of chemical composition on solar reflectance and thermal emitance of cool materials

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.3743

Keywords:

Cool materials, Radiative properties, Chemical composition

Abstract

Cool materials have higher values of solar reflectance and lower, although high, thermal emittance as compared with conventional coatings, thus heat less their surfaces. However, manufacturers mistakenly denominate them insulating, because despite low thermal conductivity of paint constituents, their thickness is very thin, which does not exceed a few millimeters, and is not enough to prevent heat transference by conduction. Therefore, physical phenomena responsible for surface temperature reduction in these materials are the superficial radiative properties (solar reflectance and thermal emittance), which are not available by manufacturers. Therefore, it aims to identify chemical elements present on cool surfaces that influence solar reflectance and thermal emittance. For this, spectral reflectance and thermal emittance were measured with methods and equipment standardized by Cool Roof Rating Council (CRRC) of 23 cool elastomeric materials selected from Brazilian market and surfaces’ micrographs were analyzed with EDS (dispersive energy x-ray detector) coupled to field emission scanning electron microscope. Results indicated that surfaces with matte surface finish are more reflective than semi-gloss ones and these more than high-gloss ones because of lower amounts of carbon and higher of oxygen, which was demonstrated by strong statistical correlation at 0.1% probability and visualized micrographs differences. Therefore, higher concentrations of titanium dioxide pigment, more reflective to infrared spectrum, did not reach higher reflectance. Furthermore, metallic element (titanium) presence in greater amounts on surfaces was not determinant for lower thermal emittance values.

Author Biographies

Marcela Macedo de Andrade, Universidade de São Paulo

Mestrado em Arquitetura, Urbanismo e Tecnologia pela Universidade de São Paulo (São Carlos - SP, Brasil).

Kelen Almeida Dornelles, Universidade de São Paulo

Doutora em Engenharia Civil pela Universidade Estadual de Campinas (UNICAMP). Professora Doutora no Instituto de Arquitetura e Urbanismo da Universidade de São Paulo (IAU/USP) (São Carlos - SP, Brasil)

References

ASTM. AMERICAN SOCIETY FOR TESTING AND MATERIALS. C1371-15: Standard test method for determination of emittance of materials near room temperature using portable emissometers. West Conshohocken: ASTM, 2015.

____. AMERICAN SOCIETY FOR TESTING AND MATERIALS. E903-20: Standard test method for solar absorptance, reflectance and transmittance of materials using integrating spheres. West Conshohocken: ASTM, 2020a.

____. AMERICAN SOCIETY FOR TESTING AND MATERIALS. G173-03: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37o tilted surface. West Conshohocken: ASTM, 2020b.

BHERING, L.L. RBio: a tool for biometric and statistical analysis using The R platform. Crop Breeding and Applied Biotechnology, Viçosa, v. 17, p. 187-190, jun. 2017.

COZZA, E. S.; ALLOISIO, M.; COMITE, A.; TANNA, G.; VICINI, S. NIR-reflecting properties of new paints for energy-efficient buildings. Solar Energy, Amsterdã, v. 116, p. 108–116, 2015.

CRRC. COOL ROOF RATING COUNCIL. CRRC-1 Roof product rating program manual. Portland: CRRC, 2022a.

_____. COOL ROOF RATING COUNCIL. CRRC-2 Wall product rating program manual. Portland: CRRC, 2022b.

CSILLAG, D. Consórcio brasileiro de superfícies frias e desempenho termoenergético de edificações com coberturas de alta refletância solar. CICS (Centro de Inovação em Construção Sustentável), São Paulo, p. 01-05, 2015.

DORNELLES, K. A. Absortância solar de superfícies opacas: métodos de determinação e base de dados para tintas látex acrílica e PVA. Orientador: Dr. Maurício Roriz. 2008. 160 f. Tese (Doutorado em Engenharia Civil) - Faculdade de Engenharia Civil, Arquitetura e Urbanismo, Universidade Estadual de Campinas, Campinas, 2008.

DORNELLES, K. A.; CARAM, R. M.; SICHIERI, E. P. Absortância solar e desempenho térmico de tintas frias para uso no envelope construtivo. Paranoá: cadernos de arquitetura e urbanismo. Brasília, n. 12, p. 55–64, 2014.

LADCHUMANANANDASIVAM, R. A natureza da luz e a sua interação com a matéria. In: LADCHUMANANANDASIVAM, R. Processos Químicos Têxteis - Ciência da Cor. 2 ed. Natal: Universidade Federal do Rio Grande do Norte, 2007. p. 1–34.

LEVINSON, R.; BERDAHL, P.; AKBARI, H. Solar spectral optical properties of pigments - part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. Solar Energy Materials and Solar Cells, Amsterdã, v. 89, n. 4, p. 319–349, 2005.

LIM, Y.-F. Novel materials and concepts for regulating infra-red radiation: radiative cooling and cool paint. In: DALAPATI, G. K.; SHARMA, M. (ed.). Energy Saving Coating Materials. Amsterdã: Elsevier, 2020. p. 113-131.

PERIN, A. L. Desenvolvimento de um equipamento para medição de emissividade. Orientador: Arno Krenzinger. 2009. 115 f. Dissertação (Mestrado em Engenharia) - Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009.

PISELLO, A. L.; ROSSI, F.; COTANA, F. Summer and winter effect of innovative cool roof tiles on the dynamic thermal behavior of buildings. Energies, Basiléia, v. 7, n. 4, p. 2343–2361, 2014.

REVEL, G. M.; MARTARELLI, M.; EMILIANI, M.; GOZALBO, A.; ORTS, M. J.; BENGOCHEA, M. A.; DELGADO, L. G.; GAKI, A.; KATSIAPI, A.; TAXIARCHOU, M.; ARABATZIS, I.; FASAKI, I.; HERMANNS, S. Cool products for building envelope - part I: development and lab scale testing. Solar Energy, Amsterdã, v. 105, p. 770–779, 2014a.

REVEL, G. M.; MARTARELLI, M.; EMILIANI, M.; CELOTTI, L.; NADALINI, R.; FERRARI, A.; HERMANNS, S.; BECKERS, E. Cool products for building envelope - part II: experimental and numerical evaluation of thermal performances. Solar Energy, Amsterdã, v. 105, p. 780–791, 2014b.

SYNNEFA, A.; SANTAMOURIS, M. White or light colored cool roofing materials. In: KOLOKOTSA, D.; SANTAMOURIS, M.; AKBARI, H. (org.). Advances in the development of cool materials for the built environment. Sharjah: Bentham Science Publishers, 2012. p. 33–71.

SYNNEFA, A.; SANTAMOURIS, M.; APOSTOLAKIS, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy, Amsterdã, v. 81, n. 4, p. 488 497, 2007.

SYNNEFA, A.; SANTAMOURIS, M.; LIVADA, I. A study of the thermal performance of reflective coatings for the urban environment. Solar Energy, Amsterdã, v. 80, n. 8, p. 968–981, 2006.

SILVA, I. L. M. Estudo de durabilidade de pinturas “frias” e convencionais expostas ao envelhecimento natural. Orientadora: Kai Loh. 2017. 170 f. Dissertação (Mestrado em Ciências) - Escola Politécnica, Universidade de São Paulo, São Paulo, 2017.

ZINZI, M. Characterisation and assessment of near infrared reflective paintings for building facade applications. Energy and Buildings, Amsterdã, v. 114, p. 206–213, 2016.

Published

26/10/2023

How to Cite

ANDRADE, M. M. de; DORNELLES, K. A. Influence of chemical composition on solar reflectance and thermal emitance of cool materials. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.3743. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/3743. Acesso em: 20 may. 2024.

Issue

Section

4. Desempenho Térmico do Ambiente Construído

Most read articles by the same author(s)