Application of a Grasshopper component to estimate NVP:
case study in the Mucuri Valley in MG
DOI:
https://doi.org/10.46421/encac.v17i1.3748Keywords:
natural ventilation potential, Grasshopper plugin, parametric platform, Ladybug toolsAbstract
A high-performance building must meet environmental comfort and energy efficiency requirements. Possible solutions include passive strategies such as natural ventilation (NV), which can provide thermal comfort and energy savings. However, its performance depends on building design and its interaction with local climate. In this study, we evaluate the Natural Ventilation Potential (NVP) of cities in the Mucuri Valley - MG, from available weather files. The NVP calculation was implemented as a component of the Grasshopper plugin, a parameterization platform inside the 3D modeler Rhinoceros. This environment represents a new way of thinking about design, integrating climate analysis and thermo-energy simulations into the graphical representation. The NVP is based on air temperature (dry bulb and dew point) and wind speed data. It can be interpreted as the amount of hours/year in which the external climatic conditions corroborate to the use of NV as a building conditioning strategy. Based on this quantitative data, designers can verify in a generic way if, and when, natural ventilation could be adopted to improve the buildings comfort conditions in each region.
References
ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 15220: Desempenho térmico de edificações -Parte 3: Zoneamento bioclimático Brasileiro e estratégias de condicionamento térmico passivo para habitações de interesse social. Rio de Janeiro, 2005.
ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS: Standard 55. Thermal Environmental Conditions for Human Occupancy, 2003.
BEN-DAVID, T., WARING, M.S., Impact of natural versus mechanical ventilation on simulated indoor air quality and energy consumption in offices in fourteen U.S. cities, Building and Environment. v. 104, pp. 320–336, 2016.
https://doi.org/10.1016/j.buildenv.2016.05.007
CIDADE BRASIL. Disponível em: www.cidade-brasil.com.br/mesorregiao-do-vale-do-mucuri.html. Acesso em: abr. 2023.
CAUSONE, F. Climatic potential for natural ventilation, Architectural Science Review. v. 59 p.p 212–228, 2016 https://doi.org/10.1080/00038628.2015.1043722
CHEN, Y., TONG, Z.; MALKAWI, A. Investigating natural ventilation potentials across the globe: regional and climatic variations, Building and Environment. v. 122, pp. 386– 396, sep. 2017, https://doi.org/10.1016/j.buildenv.2017.06.026
DAVISON, S. Grasshopper-Algorithmic Modeling for Rhino [Software]. Disponível em: www.grasshopper3d.com. Accesso em: abr.2023)
EPE - EMPRESA DE PESQUISA ENERGÉTICA. Balanço energético nacional: Ano base 2021. Empresa de Pesquisa Energética, [s. l.], p. 66, 2022.
Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-675/topico-638/BEN2022.pdf Acesso em: abr. 2023.
IEA - INTERNATIONAL ENERGY AGENCY. The Future of Cooling. [s.l], 2018. Disponível em:
www.iea.org/reports/the-future-of-cooling.Acesso em: abri. 2023.
LI, Y., LI, X. Natural ventilation potential of high-rise residential buildings in northern China using coupling thermal and airflow simulations, Building Simulation. v. 8, pp.51–64, 2015. https://doi.org/10.1007/s12273-014-0188-1
MCNEEL, R. & ASSOCIATES. Rhinoceros [Software]. Disponível em: www.rhino3d.com. Accesso em abr. 2023.
OLIVEIRA, C. C.; SAKIYAMA, N. R. M.; MIRANDA; L. V. (2017). Desempenho térmico de uma edificação unifamiliar naturalmente ventilada para o clima de Teófilo Otoni-MG. Revista Eletrônica de Engenharia Civil, Vol. 13, pp. 57-72, 2017. Disponível em:
https://www.revistas.ufg.br/reec/article/view/42940/pdf_1. Acesso em abr. 2023
PHAFF, J. C.; GIDS, W. F., TON, J. A.; REE, D. v/d.; SCHIJNDEL, L. L. M. v. The Ventilation of buildings: Investigation of the consequences of opening one window on the internal climate of a room. 1980.
RAMPONI, R., ANGELOTTI, A., BLOCKEN, B. Energy saving potential of night ventilation: sensitivity to pressure coefficients for different European climates, Applied Energy, v.123, pp.185–195, jun.2014, https://doi.org/10.1016/j.apenergy.2014.02.041
ROUDSARI, M. S., PAK, M. and SMITH, A. ‘Ladybug: a parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design’, In: 13th Building Simulation, Proceedings… Chambéry, France, 2013, August 26-28, pp. 3128–3135.
SAKIYAMA, N. R. M., MAZZAFERRO, L., CARLO, J. C., BEJAT, T. and GARRECHT, H. Natural ventilation potential from weather analyses and building simulation, Energy and Buildings, v. 231, p. 110596, 2020. https://doi.org/10.1016/j.enbuild.2020.110596
SOUZA, L. P. de .; BAVARESCO, M. V.; VAZ, C. E. V.; LAMBERTS, R. Inserção de simulações de desempenho térmico no processo de projeto. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 12, n. 00, p. e021011, 2021. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8657346. Acesso em: abr. 2023.
TONG, Z., CHEN, Y., MALKAWI, A. et al. Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, v. 179, pp. 660–668, oct. 2016, https://doi.org/10.1016/j.apenergy.2016.07.019
TOULOUPAKI, E. and THEODOSIOU, T. ‘Performance Simulation Integrated in Parametric 3D Modeling as a Method for Early-Stage Design Optimization—A Review’, Energies, vol. 10, pp. 637, 2017a.
TOULOUPAKI, E. and THEODOSIOU, T. Optimization of Building form to Minimize Energy Consumption through Parametric Modelling’, Procedia Environmental Sciences, vol. 38, pp. 509–514, 2017b.
VIEIRA, F. T.; ALEXANDRINO, C. H.; SANTOS, J.. Rádio ciência: integração acadêmica e comunitária. Revista Multidisciplinar Acadêmica Vozes dos Vales, Teófilo Otoni, v. 1, n. 5, p.1-27. 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.