Uso de redes neurais artificiais para estimação do voto de percepção térmica a céu aberto em clima tropical de savana

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.3871

Keywords:

Artificial intelligence, thermal comfort, thermal sensation vote

Abstract

The thermal perception knowledge in open-air environments requires the application of field interviews. These campaigns are time-consuming and have a high execution cost since it is necessary to collect data at different times of the year and carry out a large number of interviews to characterize the individuals' thermal adaptation. To optimize this stage, the application of the Artificial Neural Networks (ANN) technique is envisaged, which enables the data integration and the models creation which are capable of predicting human behavior in response to environmental characteristics. This study aims to evaluate the accuracy of ANN application in estimating declared thermal perception for open-air environments located in a tropical savanna climate region. The methodology uses a secondary database of thermal perceptions declared by local respondents, obtained simultaneously with meteorological variables. The ANN was developed using the MATLAB application, with structure and learning algorithm-specific configurations. Estimations with the modeled neural network involved nine different combinations of input variables for learning, focusing on determining the best accuracy with the available database. The best results are shown when the network is trained using anthropometric, individual, and meteorological variables and the data collection location as inputs, obtaining root mean square errors of 0.115 and a correlation coefficient of 0.783. We also found that gender was the input variable that least affected the accuracy of the network when it was excluded from training.

Author Biographies

Thomas Keiti Onuma, Universidade Federal de Mato Grosso

Civil Engineer from the Federal University of Mato Grosso (Cuiabá - MT, Brazil).

Ivan Julio Apolonio Callejas, Universidade Federal de Mato Grosso

PhD in Environmental Physics from the Federal University of Mato Grosso. Adjunct Professor at the Federal University of Mato Grosso (Cuiabá - MT, Brazil).

Luciane Cleonice Durante, Universidade Federal de Mato Grosso

PhD in Environmental Physics from the Federal University of Mato Grosso. Full Professor at the Federal University of Mato Grosso (Cuiabá - MT, Brazil).

References

ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS. Standard 55: Thermal environmental for human occupancy. Atlanta, 2010.

BORGES, V. C. D. A. L., CALLEJAS, I. J. A., DURANTE, L. C. (2020) Thermal sensation in outdoor urban spaces: a study in a tropical savannah climate- Brazil. Int J Biometeorol, v.64, n. 3, p.533–545. https://doi.org/10.1007/s00484-019-01830-x

CALLEJAS, I. J. A.; BIANCHI, E. C. Utilização de Redes Neurais Artificiais para estimação do Índice de Bulbo Úmido Termômetro de Globo (IBUTG). In: Encontro Nacional de Tecnologia no Ambiente Construído, 18., 2020, Porto Alegre. Anais.... Porto Alegre: ANTAC, 2020. p. 1–8. https://doi.org/10.46421/entac.v18i.713

CHAN, S. Y.; CHAU, C. K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Building and Environment, v. 164, 106364, 2019. Disponível em: https://doi.org/10.1016/j.buildenv.2019.106364. Acesso em: 25 nov. 2022.

CORREA, S. M. B. B. Probabilidade e estatística. Belo Horizonte: PUC Minas Virtual, 2003.

DENG, Z.; CHEN, Q. Artificial neural network models using thermal sensations and occupants’ behavior for predicting thermal comfort. Energy and Buildings, v. 174, p. 587-602, 2018. https://doi.org/10.1016/j.enbuild.2018.06.060

HAYKIN, S. Redes neurais: princípios e práticas. 2. ed. Porto Alegre: Bookman, 2001. 898p.

INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Estação de Cuiabá - Climatologia Local. Disponível em: http://sonda.ccst.inpe.br/estacoes/cuiaba_clima.html. Acesso em: 06 fev. 2023.

ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551: Ergonomics of the thermal environment – assessment of the influence of the thermal environment using subjective judgement scales. Geneva, 2019.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo Brasileiro de 2021. Rio de Janeiro: IBGE, 2021.

KEELING, T. P.; ROESCH, E. B.; CLEMENTS-CROOME, D. Cognitive Appraisals Affect Both Embodiment of Thermal Sensation and Its Mapping to Thermal Evaluation. Frontiers in Psychology, v. 7, n. 800, 2016. https://doi.org/10.3389/fpsyg.2016.00800

LIU, W.; LIAN, Z.; ZHAO, B. A neural network evaluation model for individual thermal comfort. Energy and Buildings, v. 39, n. 10, p. 1115-1122, 2007. https://doi.org/10.1016/j.enbuild.2006.12.005

MATHWORKS. MATLAB. Disponível em: <https://www.mathworks.com/products/matlab.html>. Acesso em: 11 dez. 2022.

PEEL, M. C.; FINLAYSON, B. L.; McMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, v. 11, p.1633-1644, 2007. https://doi.org/10.5194/hess-11-1633-2007

SHAH, R.; PANDIT, R. K.; GAUR, M. K. Thermal comfort analysis through development of artificial neural network models: An experimental study in Cwa climate. Materials Today: Proceedings, v. 57, p. 2018-2025, 2022. https://doi.org/10.1016/j.matpr.2021.11.139

VELLEI, Marika et al. Dynamic thermal perception: A review and agenda for future experimental research. Building and Environment, v. 205, p. 108269, 2021. https://doi.org/10.1016/j.buildenv.2021.108269

VON GRABE, J. Potential of artificial neural networks to predict thermal sensation votes. Applied energy, v. 161, p. 412-424, 2016. https://doi.org/10.1016/j.apenergy.2015.10.061

Published

2023-10-26

How to Cite

ONUMA, Thomas Keiti; CALLEJAS, Ivan Julio Apolonio; DURANTE, Luciane Cleonice. Uso de redes neurais artificiais para estimação do voto de percepção térmica a céu aberto em clima tropical de savana. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–9. DOI: 10.46421/encac.v17i1.3871. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/3871. Acesso em: 21 nov. 2024.

Issue

Section

3. Conforto Térmico

Most read articles by the same author(s)