Uso de redes neurais artificiais para estimação do voto de percepção térmica a céu aberto em clima tropical de savana
DOI:
https://doi.org/10.46421/encac.v17i1.3871Keywords:
Artificial intelligence, thermal comfort, thermal sensation voteAbstract
The thermal perception knowledge in open-air environments requires the application of field interviews. These campaigns are time-consuming and have a high execution cost since it is necessary to collect data at different times of the year and carry out a large number of interviews to characterize the individuals' thermal adaptation. To optimize this stage, the application of the Artificial Neural Networks (ANN) technique is envisaged, which enables the data integration and the models creation which are capable of predicting human behavior in response to environmental characteristics. This study aims to evaluate the accuracy of ANN application in estimating declared thermal perception for open-air environments located in a tropical savanna climate region. The methodology uses a secondary database of thermal perceptions declared by local respondents, obtained simultaneously with meteorological variables. The ANN was developed using the MATLAB application, with structure and learning algorithm-specific configurations. Estimations with the modeled neural network involved nine different combinations of input variables for learning, focusing on determining the best accuracy with the available database. The best results are shown when the network is trained using anthropometric, individual, and meteorological variables and the data collection location as inputs, obtaining root mean square errors of 0.115 and a correlation coefficient of 0.783. We also found that gender was the input variable that least affected the accuracy of the network when it was excluded from training.
References
ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS. Standard 55: Thermal environmental for human occupancy. Atlanta, 2010.
BORGES, V. C. D. A. L., CALLEJAS, I. J. A., DURANTE, L. C. (2020) Thermal sensation in outdoor urban spaces: a study in a tropical savannah climate- Brazil. Int J Biometeorol, v.64, n. 3, p.533–545. https://doi.org/10.1007/s00484-019-01830-x
CALLEJAS, I. J. A.; BIANCHI, E. C. Utilização de Redes Neurais Artificiais para estimação do Índice de Bulbo Úmido Termômetro de Globo (IBUTG). In: Encontro Nacional de Tecnologia no Ambiente Construído, 18., 2020, Porto Alegre. Anais.... Porto Alegre: ANTAC, 2020. p. 1–8. https://doi.org/10.46421/entac.v18i.713
CHAN, S. Y.; CHAU, C. K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Building and Environment, v. 164, 106364, 2019. Disponível em: https://doi.org/10.1016/j.buildenv.2019.106364. Acesso em: 25 nov. 2022.
CORREA, S. M. B. B. Probabilidade e estatística. Belo Horizonte: PUC Minas Virtual, 2003.
DENG, Z.; CHEN, Q. Artificial neural network models using thermal sensations and occupants’ behavior for predicting thermal comfort. Energy and Buildings, v. 174, p. 587-602, 2018. https://doi.org/10.1016/j.enbuild.2018.06.060
HAYKIN, S. Redes neurais: princípios e práticas. 2. ed. Porto Alegre: Bookman, 2001. 898p.
INPE - INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Estação de Cuiabá - Climatologia Local. Disponível em: http://sonda.ccst.inpe.br/estacoes/cuiaba_clima.html. Acesso em: 06 fev. 2023.
ISO - INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551: Ergonomics of the thermal environment – assessment of the influence of the thermal environment using subjective judgement scales. Geneva, 2019.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Censo Brasileiro de 2021. Rio de Janeiro: IBGE, 2021.
KEELING, T. P.; ROESCH, E. B.; CLEMENTS-CROOME, D. Cognitive Appraisals Affect Both Embodiment of Thermal Sensation and Its Mapping to Thermal Evaluation. Frontiers in Psychology, v. 7, n. 800, 2016. https://doi.org/10.3389/fpsyg.2016.00800
LIU, W.; LIAN, Z.; ZHAO, B. A neural network evaluation model for individual thermal comfort. Energy and Buildings, v. 39, n. 10, p. 1115-1122, 2007. https://doi.org/10.1016/j.enbuild.2006.12.005
MATHWORKS. MATLAB. Disponível em: <https://www.mathworks.com/products/matlab.html>. Acesso em: 11 dez. 2022.
PEEL, M. C.; FINLAYSON, B. L.; McMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union, v. 11, p.1633-1644, 2007. https://doi.org/10.5194/hess-11-1633-2007
SHAH, R.; PANDIT, R. K.; GAUR, M. K. Thermal comfort analysis through development of artificial neural network models: An experimental study in Cwa climate. Materials Today: Proceedings, v. 57, p. 2018-2025, 2022. https://doi.org/10.1016/j.matpr.2021.11.139
VELLEI, Marika et al. Dynamic thermal perception: A review and agenda for future experimental research. Building and Environment, v. 205, p. 108269, 2021. https://doi.org/10.1016/j.buildenv.2021.108269
VON GRABE, J. Potential of artificial neural networks to predict thermal sensation votes. Applied energy, v. 161, p. 412-424, 2016. https://doi.org/10.1016/j.apenergy.2015.10.061
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.