The use of photobioreactors in façades for carbon mitigation and sequestration

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.3996

Keywords:

building envelop, microalgae, buildings performance

Abstract

The building's microalgae application research is related to a broader project, comprising aspects of the academic space environmental comfort and energy consumption with the on-grid photovoltaic generation, as well as the alternatives investigation for improving building envelope performance. The project aim is the interdisciplinary concepts application involving Architecture and Biotechnology, called Black/Dark Ecologies, referring to a "new" investigative interest to explore a "new" nature, not only related to architectural space, but a broader environmental approach. This relationship materializes in the use of closed photobioreactors with microalgae installed on the facades of educational buildings. The present work presents the research methodological framework based on a bibliometric review, case studies, and proposals for a specific model. In addition to thermal and energy performance, these strategies will allow the sequestration of carbon dioxide and other emitters that contribute to the process of climate change; this coincides with the discussions of the 2050 scenarios and the reduction of emissions, guidelines discussed at the recent COP-27.

Author Biographies

Marcos Antonio Leite Frandoloso, Universidade de Passo Fundo

Arquiteto e Urbanista. Doutor em Arquitetura e Urbanismo pela Universidade Federal do Rio Grande do Norte. Professor da Faculdade Empresarial de Chapecó e da Universidade de Passo Fundo (Passo Fundo/RS).

Rodrigo Fritsch, Universidade de Passo Fundo

Doutorando na Pontifícia Universidade do Paraná. Professor na Universidade de Passo Fundo (Passo Fundo - RS) 

Sidnei Matana, Universidade de Passo Fundo

Mestre em Engenharia Civil e Ambiental pela Universidade de Passo Fundo. Arquiteto e Urbanista (Passo Fundo -RS)

Eduardo, Universidade Federal de Pelotas

PhD em Arquitetura e Urbanismo pela Universidade Federal do Rio Grande do Sul. Professor na Universidade Federal de Pelotas (Pelotas - RS)

Luciane Maria Colla, Universidade de Passo Fundo

Doutora em Engenharia e Ciência de Alimentos pela Universidade Federal de Rio Grande. Engenheira de Alimentos. Professora na Universidade de Passo Fundo (Passo Fundo - RS)

Julia de Medeiros Nicolodi, Universidade de Passo Fundo

Bolsista de Iniciação Científica, estudande de Arquitetura e Urbanismo na Universidade de Passo Fundo (Passo Fundo - RS)

References

ACIÉN FERNÁNDEZ, F. G.; FERNÁNDEZ SEVILLA, J. M.; MOLINA GRIMA, E. Photobioreactors for the Production of Microalgae. Rev Environ Sci Biotechnol, v.12, p 131–151, 2013.

ALI, S.; PETER, A. P.; CHEW, K. W.; MUNAWAROH, H. S. H.; SHOW, P. L. Resource recovery from industrial effluents through the cultivation of microalgae: A review. Bioresource Technology, v. 337, p 125461, 2021.

ARUP. The Arup Journal 2013 Issue 2. 2013. Disponível em: https://www.arup.com/perspectives/publications/the-arup-journal/section/the-arup-journal-2013-issue-2. Acesso em: 25 nov. 2022.

ARUP. Four Plausible Futures: 2050 Scenarios. 2019. Disponível em: https://www.arup.com/-/media/arup/files/publications/2/2050_scenarios.pdf. Acesso em: 25 nov. 2022.

BRANDLI, L.; SALVIA, A.L.; MAZUTTI, J.; REGINATTO, G. Higher Education institutions facing climate change: The Brazilian scenario, transforming universities for a changing climate. Working Paper Series No. 5. 2021. Disponível em: https://f81108_78f309bcdd614993ae8005e895c999a8.pdf. Acesso em: 18 Nov. 2021.

CAHYONUGROHO, O. H; NINDHITA, S. N. Effect of nutrient to chlorella sp. Growth in removing CO2 emission. IJCTR, v.10, n.11, p 08-13, 2018. Https://doi.org/10.20902/ijctr.2018.111002.

COLLA, L.M.; REINEHR, C.O.; REICHERT, C. Production of biomass and nutraceutical compounds by Spirulina platensis under diVerent temperature and nitrogen regimes. Bioresource Technology, v.98, p 1489–1493, 2007.

DAS, P.; QUADIR, M. A.; THAHER, M. I.; ALGHASAL, G. S. H. S.; ALBAJARI, H. M. S. J. Microalgal nutrient recycling from the primary effluent of municipal wastewater and the use of the produced biomass as biofertilizer. International Journal of Environmental Science and Technology, v.16, p 3355-3364, 2019.

DECESARO, A.; REMPEL, A.; MACHADO, T. S.; CAPPELLARO, C.; MACHADO, B. S.; CECHIN, I.; THOMÉ. A.; COLLA, L. M. Bacterial biosurfactant increases ex situ biodiesel bioremediation in clayey soil. Biodegradation, v.32, p 389-401, 2021.

DINESHKUMAR, R.; SUBRAMANIAN, J.; SAMPATHKUMAR, P. Prospective of Chlorella vulgaris to augment growth and yield parameters along with superior seed qualities in the black Gram, Vigna mungo (L.). Waste and Biomass Valorization, v.11, p 1279-1287, 2020

DNV AS. Energy Transition Outlook 2021 Executive Summary. Global and regional forecasts for 2050. 40. 2021. Disponível em:https://eto.dnv.com/2021. Acesso em: 14 nov. 2021.

DUARTE, M. A.; OLIVEIRA, R. D.; LIMA, F. R. S. Fotobiorreatores de Algas Integrados em Fachadas Prediais: Uma Revisão da Literatura para Guiar Trabalhos Futuros. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19, 2022, Canela. Anais. Porto Alegre: ANTAC, 2022.

FERNANDES, B. D., MOTA, A., TEIXEIRA, J. A., & VICENTE, A. A. (2015). Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends. Biotechnology Advances, 33(6), 1228–1245. doi:10.1016/j.biotechadv.2015.03.

FRANDOLOSO, M. A. L.; CUCHÍ i BURGOS, A.; CUNHA, E. G. da. Application of eco-efficiency in university buildings: policies and decision-making processes. In: Towards Green Campus Operations: Energy, climate and Sustainable Development Initiatives at Universities. Berlin: Springer, p 141-158, 2018.

GIVONI, B.; GULICH, M.; GOMEZ, C.; GOMUZ, A. Radiant cooling using metal roofs in developing countries. Proceedings of the 21st National Passive Solar Conference. Boulder, USA: American Solar Energy Society, p 83-87, 1996.

GODBOLE, V.; PAL, M. K.; GAUTAM, P. A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Research, v.58, p 102436, 2021.

GROAT, L.; WANG, D. Architectural research methods. New York: John Wiley & Sons, 2002. ISBN 0-471-33365-4.

IBA - Hamburg. The Building Exhibition within the Building Exhibition. Disponível em: https://www.internationale-bauausstellung-hamburg.de/en/projects/wilhelmsburg-central/the-building-exhibition-within-the-building-exhibition/projekt/the-building-exhibition-within-the-building-exhibition-1.html. s.d. Acesso 20 mar. 2023.

IPCC. INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press. In Press. Disponível em: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf. 2021. Acesso em: 20 mar. 2023.

KERNER, M.; GEBKEN, T.; SUNDARRAO, I.; HINDERSIN, S.; SAUSS, D. Development of a control system to cover the demand for heat in a building with algae production in a bioenergy façade. Energy & Buildings, v.184, p 65–71, 2019.

LEAL FILHO, W. et al. Towards a common future: revising the evolution of university-based sustainability research literature. International Journal of Sustainable Development & World Ecology, v.28, n.6, p 503-517, 2021. doi:10.1080/13504509.2021.1881651.

LEE, J. Y.; HONG, M-E.; CHANG, W. S.; SIM, S. J. Enhanced carbon dioxide fixation of Haematococcus pluvialis using sequential operating system in tubular photobioreactors. Process Biochemistry, v.7, n.50, p 1091-1096, 2015. https://doi.org/10.1016/j.procbio.2015.03.021.

MATANA JÚNIOR, S. Estudo de viabilidade técnica e econômica para edificação universitária zero energy Building. Dissertação (Mestrado em Engenharia Civil e Ambiental) – Curso de Pós-Graduação em Engenharia Civil e Ambiental, Universidade de Passo Fundo, Passo Fundo, 2022.

MATANA JÚNIOR, S.; FRANDOLOSO, M.A.L.; BRIÃO, V.B. Technical and economic feasibility study for a university zero energy building in Southern Brazil. Energy & Buildings, v.281, p 112748, 2023. https://doi.org/10.1016/j.enbuild.2022.112748.

MCCOWAN, T. Climate Change in Higher Education: a curriculum topography approach, Transforming Universities for a Changing Climate, Working Paper Series No. 6, 2021. Disponível em: https://5f909d8c-4bd1-4d68-8518-3b7772d3fa86.filesusr.com/ugd/f81108_f42187d975d941cda1c3ea1785f169d3.pdf. Acesso em: 25 nov. 2021.

MORENO-GARCIA, L.; ADJALLÉ, K.; BARNABÉ, S.; RAGHAVAN, G. S. V. Microalgae biomass production for a biorefinery system: recent advances and the way towards sustainability. Renewable and Sustainable Energy Reviews, v.76, p 493-506, 2017.

MORTON, T. Ecology without nature: rethinking environmental aesthetics. Boston, MA: Harvard University Press, 2007.

MORTON, T. Dark ecology: for a logic of future coexistence. New York: Columbia University Press, 2016.

ONYEAKA, H.; MIRI, T.; OBILEKE, K.; HART, A.; ANUMUDU, C.; AL-SHARIFY, Z. T. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Science & Technology, v.1, p 100007, 2021. https://doi.org/10.1016/j.ccst.2021.100007.

PASQUERO, C.; POLETTO, M.; GRESKOVA, T. Photosynthetic Architecture in times of Climate Change and other global disruptions. In: 1.T6.S1. Bio Data/Bio Tectonics for Architectural Design. eCAADe, v.1, n.38, p 583 – 592, 2020. Disponível em: https://www.ecologicstudio.com/knowledge-room/ecaade-2020.

PASQUERO, C.; POLETTO, M. Bio-digital aesthetics as value system of post-Anthropocene architecture. International Journal of Architectural Computing, v.18, n.2, p 120-140, 2020. https://doi.org/10.1177/1478077120922941.

PRUVOST, J; CORNET, J-F; PILON, L. Large-Scale Production of Algal Biomass: Photobioreactors. Faizal Bux; Yusuf Chisti. Algae Biotechnology: Products and Processes, Springer, pp.41-66, 2016, Green Energy and Technology, v, p 41-66, 2016. https://doi.org/10.1007/978-3-319-12334-9_3

REBELATTO, B. G. Eficiência energética nas universidades: uma contribuição para o Objetivo do Desenvolvimento Sustentável 7. (Dissertação de Mestrado). Programa de Pós-Graduação em Engenharia Civil e Ambiental. Universidade de Passo Fundo, 2019.

REMPEL, A.; DE SOUZA SOSSELLA, F.; MARGARITES, A. C.; ASTOLFI, A. L.; STEINMETZ, R. L. R.; KUNZ, A.; TREICHEL, H.; COLLA, L. M. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresource Technology, v.288, p 121588, 2019.

SACHT, H. M.; VETTORAZZI, E. Urban Jungle: Influência da Vegetação na Climatização do Andar 43 no Edifício Mirante do Vale em São Paulo. In: XIX ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022, Canela. Anais... Porto Alegre: ANTAC, 2022.

SANTOSO, D. A.; DARMAWAN, R. A.; SUSANTO, J. Microalgae for CO2 Reduction and Wastewater Treatment Application in Industrial Area. Jurnal Ilmu dan Teknologi Kelautan Tropi, v.3, n.2, p 62-70, 2011.

SCHERER, M. J; BERWANGER, L.; REDIN, J.; SEVERO, T. Envoltórias vegetadas e sua contribuição no desempenho térmico de HIS para a zona bioclimática 2. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022, Canela. Anais... Porto Alegre: ANTAC, 2022.

SEDIGHI, M.; POURMOGHADDAM QHAZVINI, P.; AMIDPOUR, M. Algae-Powered Buildings: A Review of an Innovative, Sustainable Approach in the Built Environment. Sustainability, v.15, p 3729, 2023. https://doi.org/ 10.3390/su15043729

SETTE, A. O ideal da cidade compacta ainda faz sentido? 2021. Disponível em: https://www.archdaily.com.br/br/957822/o-ideal-da-cidade-compacta-ainda-faz-sentido. Acesso em: 08 jun. 2021.

SHABANOV, ILYA. The Effortless Academic’s Manual. 2023. Disponível em: https://effortlessacademic.carrd.co/. Acesso em: 27 jan. 2023.

SIDDIKI, S. Y. A.; MOFIJUR, M.; KUMAR, P. S.; AHMED, S. F.; INAYAT, A.; KUSUMO, F.; BADRUDDIN, I. A.; T.M., KHAN, K. T. M.; NGHIEM, L. D.; ONG, H. C.; MAHLIA, T. M. I. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, v.307, p 121782, 2022.

SOARES, N., COSTA, J. J., GASPAR, A. R., & SANTOS, P. (2013). Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy and Buildings, 59, 82–103. doi:10.1016/j.enbuild.2012.12.042.

THE CITY FIX BRASIL. Nossa Cidade: o desafio de tornar o acesso às cidades igual para todos. 2016. Disponível em https://www.thecityfixbrasil.org/2016/11/01/nossa-cidade-o-desafio-de-tornar-o-acesso-as-cidades-igual-para-todos/. Acesso em: 22 nov. 2021.

UGWU, C. U.; OGBONNA, J. C.; TANAKA, H. Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry, v.11, n.40, p 3406-3411, 2005. https://doi.org/10.1016/j.procbio.2005.01.023.

UN. UNITED NATIONS. COP27: Delivering for people and the planet. 2022. Disponível em:https://www.un.org/en/climatechange/cop27. Acesso em: 22 abr. 2023.

VALDAMERI, C. C. N; WESTPHAL, F. S. O uso de sistemas verticais de vegetação como estratégia para conforto térmico. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022, Canela. Anais... Porto Alegre: ANTAC, 2022.

WANG, G.; TANG, Z.; GAO, Y.; LIU P.; LI, Y.; LI, A; CHEN, X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, março de 2023, https://doi.org/10.1021/acs.chemrev.2c00572.

WRI BRASIL. Cidades precisam fomentar o acesso equitativo a serviços urbanos para atingir a prosperidade econômica e o desenvolvimento sustentável. 2021. Disponível em: https://wribrasil.org.br/pt/blog/clima/ipcc-relatorio-mudancas-climaticas-2021. Acesso em: 08 jun. 2021.

XIAO, Y.; LUO, Y. Research progress and application of photobioreactor in wastewater treatment. E3S Web Conf., v.352, p 02024, 2022. https://doi.org/10.1051/e3sconf/202235202024.

ZAERA-POLO, A.; ANDERSON, J. S. The Ecologies of the Building Envelope: A Material History and Theory of Architectural Surfaces. Barcelona: Actar, 2021.

ZALBA, B., MARÍN, J. M., CABEZA, L. F., & MEHLING, H. (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23(3), 251–283. doi:10.1016/s1359-4311(02)00192-8.

ZARROUK, C. Contribution a l’etude d’une cyanophycee . Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima (Setch et Gardner) Geitler. Tese. Universidade de Paris, França, 1996.

ZHANG, QING H.; WU, XIA; XUE, SHENG Z.; WANG, ZHI H.; YAN, CHENG H.; CONG, WEI. Hydrodynamic characteristics and microalgae cultivation in a novel flat-plate photobioreactor. 2012. Biotechnol Progress. 29(1), 127–134. doi:10.1002/btpr.1641.

Published

2023-10-26

How to Cite

LEITE FRANDOLOSO, Marcos Antonio; FRITSCH, Rodrigo; MATANA, Sidnei; EDUARDO; COLLA, Luciane Maria; NICOLODI, Julia de Medeiros. The use of photobioreactors in façades for carbon mitigation and sequestration. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.3996. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/3996. Acesso em: 22 jul. 2024.

Issue

Section

5. Eficiência Energética

Most read articles by the same author(s)

<< < 1 2