OPTIMIZATION OF A GLAZED BUILDING USING A MULTI-OBJECTIVE GENETIC ALGORITHM TO REDUCE ENERGY DEMAND
DOI:
https://doi.org/10.46421/encac.v17i1.4048Keywords:
multi-objective optimization, energy demand, glazed facadesAbstract
To avoid an increase in air conditioning energy demand, it is necessary to consider the best combinations between different design variables. Adopting multi-objective optimization in computer simulations can speed up the selection of these combinations. The objective of this pilot study was to present a multi-objective optimization method to reduce the energy demand of artificial air conditioning of a building, with predominantly glazed facades and inserted in the Bioclimatic Zone 3 of Brazil. The three-dimensional modeling of this building was carried out using the Rhinoceros 7 software, while its parameterization and simulation were performed using the Ladybug Tools plugin. The multi-objective optimization was performed through the Octopus plugin, using the SPEA-2 algorithm. To obtain the lowest energy demand for air conditioning, the objective functions analyzed were the lowest energy demand for heating and cooling. The modified variables were thermal transmittance of the glass, and depth and distance of the brises. The modified variables were thermal transmittance of the glass, and depth and distance of the brises. The best solution reduced the cooling energy demand by 8.9%, increased the heating energy demand by 97.9%, and reduced the total energy demand by 8.8%. Of the 500 combinations that took four days to complete, 20 were considered optimal. These results indicate that applying multi-objective optimization in thermal energy performance analysis in buildings with predominantly glazed facades is extremely efficient, due to the potential to automatically combine different variables and identify better combinations for parameters that negatively influence each other.
References
ABNT. NBR 15220-3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. ABNT, Rio de Janeiro, Associação Brasileira de Normas Técnicas, 2005. Disponível em: www.abnt.org.br.
CABEZA, L. F. et al. Buildings. Em: CABEZA, L. l; BAI, Q. (org.). Climate Change 2022: Mitigation of climate change. WGIIIed. Cambridge: IPCC, 2022.
GOSSARD, D.; LARTIGUE, B.; THELLIER, F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy and Buildings, [s. l.], v. 67, p. 253–260, 2013.
INMETRO. Instrução normativa INMETRO para a eficiência energética das edificações comerciais, de serviços e públicas. Brasil, 2022.
IPCC. Summary for Policymakers. Cambridge: IPCC AR6 WGI, 2021. Disponível em: https://www.ipcc.ch/report/ar6/wg1/#SPM. Acesso em: 19 ago. 2021.
JAVANROODI, K.; NIK, V. M.; ADL-ZARRABI, B. A multi-objective optimization framework for designing climate-resilient building forms in urban areas. Em: IOP Conference Series: Earth and Environmental Science. [S. l.]: IOP Publishing Ltd, 2020.
LEITZKE, R. K. Avaliação de materiais de mudança de fase em uma habitação com fechamentos leves nas Zonas Bioclimáticas 1, 2 e 3 com base em algoritmos evolutivos multiobjetivo. 2021. Dissertação - Universidade Federal de Pelotas, Pelotas, 2021. Disponível em: https://wp.ufpel.edu.br/prograu/dissertacoes-conforto-e-sustentabilidade-do-ambiente-construido/. Acesso em: 10 out. 2022.
LEITZKE, R. K. et al. Optimization of the Traditional Method for Creating a Weather Simulation File: The Pelotas.epw Case. Journal of Civil Engineering and Architecture, [s. l.], v. 12, n. 10, p. 741–756, 2018.
MACIEL, T. dos S. Otimização multiobjetivo na análise de desempenho energético de uma edificação escolar. 2021. Dissertação - Universidade Federal de Pelotas, Pelotas, 2021. Disponível em: https://wp.ufpel.edu.br/prograu/dissertacoes-conforto-e-sustentabilidade-do-ambiente-construido/. Acesso em: 10 out. 2022.
MACIEL, T. dos S. et al. Otimização termoenergética de uma edificação escolar: discussão sobre o desempenho de quatro algoritmos evolutivos multiobjetivo. Ambiente Construído, [s. l.], v. 21, n. 4, p. 221–246, 2021.
NAJI, S.; AYE, L.; NOGUCHI, M. Multi-objective optimisations of envelope components for a prefabricated house in six climate zones. Applied Energy, [s. l.], v. 282, 2021.
PILECHIHA, P. et al. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency. Applied Energy, [s. l.], v. 261, 2020.
VUKADINOVIĆ, A. et al. Multi-objective optimization of energy performance for a detached residential building with a sunspace using the NSGA-II genetic algorithm. Solar Energy, [s. l.], v. 224, p. 1426–1444, 2021.
WU, C.; WEI, H.; WANG, G. Multi-objective optimization of energy and daylighting performance of township street house in western Guangdong, China. Em: 2022. Proceedings - 2022 International Conference on Big Data, Information and Computer Network, BDICN 2022. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2022. p. 575–580.
WU, H.; ZHANG, T. Multi-objective optimization of energy, visual, and thermal performance for building envelopes in China’s hot summer and cold winter climate zone. Journal of Building Engineering, [s. l.], v. 59, 2022.
ZITZLER, E. et al. SPEA2: Improving the strength pareto evolutionary algorithm. TIK Report, [s. l.], v. 103, 2001. Disponível em: https://doi.org/10.3929/ethz-a-004284029. Acesso em: 1 jun. 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.