THERMAL PERFORMANCE OF URBAN FACADES USING DIFFERENT CERAMIC CLADDINGS

Authors

DOI:

https://doi.org/10.46421/encac.v17i1.4117

Keywords:

solar reflectance, solar orientation, facades, ceramic claddings

Abstract

The incident solar radiation on urban facades with certain coatings can generate heat accumulation in cities, so the envelopes of buildings can cause thermal discomfort to the inhabitants and increase cooling demand in buildings. Therefore, the present paper evaluates the thermal performance of facades with ceramic coatings of different solar reflectances, investigating the influence of north, south, east and west orientations. Thus, outdoor experiments was conducted in a typical summer day. Surface temperature, spectral reflectance an air temperature measurement were collected. The results show that the east facade had the highest average surface temperature during the day, 33.0°C, compared to 28.3°C, 27.8°C and 27.7°C on the north, south and west facades, respectively. However, it showed a rapid cooling at night with an average surface temperature of 26.4°C compared to 28.5°C, 26.7°C and 34.7°C on the north, south and west facades, respectively. West façade had the highest average maximum surface temperature, 63.9°C, a difference of 24.9°C from the south façade. On the other hand, coatings of different colors and reflectances present different thermal behavior on different facades. Moreover, the increase in reflectance from 3.7% (AZE_LB) to 50.5% (BR_LB) can generate a difference in the maximum surface temperature of 18.9°C (west), 15.1°C (east), 7.6°C (north) and 3°C (south). Thus, the considerable influence of surface characteristics and orientation on the thermal performance of urban facades is highlighted, for the correct use of coatings and for mitigating urban heating.

Author Biographies

Ana Júlia Pilon Castello, Pontifícia Universidade Católica de Campinas

Mestre em Sistemas de Infraestrutura Urbana na Pontifícia Universidade Católica de Campinas (Campinas - SP, Brasil)

Marcius Fabius Henriques de Carvalho, Pontifícia Universidade Católica de Campinas

Doutor em Engenharia Elétrica na Universidade Estadual de Campinas. Professor na Ponti´ficia Universidade Católica de Campinas (Campinas - SP, Brasil).

Lia Toledo Moreira Mota, Pontifícia Universidade Católica de Campinas

Doutora em Engenharia Elétrica na Universidade Estadual de Campinas. Professora na Ponti´ficia Universidade Católica de Campinas (Campinas - SP, Brasil).

Claudia Cotrim Pezzuto, Pontifícia Universidade Católica de Campinas

Doutora em Engenharia Civil na Universidade Estadual de Campinas. Professora na Ponti´ficia Universidade Católica de Campinas (Campinas - SP, Brasil).

References

AKBARI, H.; MATTHEWS, H. D.; SETO, D. The long-term effect of increasing the albedo of urban areas. Environmental Research Letters, 2012.

ALCHAPAR, N. L. et al. The impact of different cooling strategies on urban air temperatures: the cases of Campinas, Brazil and Mendoza, Argentina. Theoretical and Applied Climatology, v. 130, n. 1–2, p. 35–50, 2017.

ALCHAPAR, N. L.; CORREA, E. N. Optothermal properties of façade coatings. Effects of environmental exposure over solar reflective index. Journal of Building Engineering, v. 32, n. May, p. 101536, 2020.

ALCHAPAR, N. L.; CORREA, E. N.; CANTÓN, M. A. Classification of building materials used in the urban envelopes according to their capacity for mitigation of the urban heat island in semiarid zones. Energy and Buildings, v. 69, p. 22–32, 2014.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C1864-17R2022. Standard Teste Method for Determination of Solar Reflectance od Directionally Reflective Material Using Portable Solar Reflectometer. v. 04.06, 2022.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR15220-1: desempenho térmico de edificações - parte 1: definições, símbolos e unidades. Rio de Janeiro: [s.n.]. Disponível em: .

CETESB. Qualidade do ar. Disponível em: https://cetesb.sp.gov.br/ar/qualar/. Acesso em: 2022.

DORNELLES. Absortância solar de superfícies opacas: métodos de determinação e base de dados para tintas látex acrílica e pva. [s.l: s.n.].

DORNELLES, K. A.; RORIZ, M. Métodos alternativos para identificar a absortância solar de superfícies opacas. Ambiente Construído, n. 16, p. 109–127, 2007.

DOULOS, L.; SANTAMOURIS, M.; LIVADA, I. Passive cooling of outdoor urban spaces. The role of materials. Solar Energy, v. 77, n. 2, p. 231–249, 2004.

ERELL, E. et al. Effect of high-albedo materials on pedestrian heat stress in urban street canyons. Urban Climate, v. 10, n. P2, p. 367–386, 2014.

GARSHASBI, S. et al. Urban mitigation and building adaptation to minimize the future cooling energy needs. Solar Energy, v. 204, n. March, p. 708–719, 2020.

GEORGAKIS, C.; ZORAS, S.; SANTAMOURIS, M. Studying the effect of “cool” coatings in street urban canyons and its potential as a heat island mitigation technique. Sustainable Cities and Society, v. 13, p. 20–31, 2014.

KINOSHITA, S.; YOSHIDA, A. Investigating performance prediction and optimization of spectral solar reflectance of cool painted layers. Energy and Buildings, v. 114, p. 214–220, 15 fev. 2016.

LEVINSON, R. et al. Effects of soiling and cleaning on the reflectance and solar heat gain of a light-colored roofing membrane. Atmospheric Environment, v. 39, n. 40, p. 7807–7824, dez. 2005.

LEVINSON RONNEN. Using solar availability factors to adjust cool-wall energy savings for shading. Solar Energy, 2019.

LOBACCARO, G.; FRONTINI, F. Solar energy in urban environment: How urban densification affects existing buildings. Energy Procedia. Anais...Elsevier Ltd, 2014.

MUNIZ-GÄAL, L. P. et al. Eficiência térmica de materiais de cobertura. Ambiente Construído, v. 18, n. 1, p. 503–518, 2018.

PAOLINI, R. et al. Natural aging of cool walls: Impact on solar reflectance, sensitivity to thermal shocks and building energy needs. Energy and Buildings, v. 153, p. 287–296, 15 out. 2017.

PEREIRA, C. D. et al. Relatório de Avaliação do Espectrômetro Portátil ALTA II. Florianópolis: [s.n.].

PEREZ, G. et al. Catalogue of Urban Surface Finish Materials: Optimizing Solar Energy Management in Latin American Cities Located in Different Climatic Zones. Chile: [s.n.].

PISELLO, A. L. et al. Combined thermal effect of cool roof and cool façade on a prototype building. Energy Procedia. Anais...Elsevier Ltd, 1 nov. 2015.

SANTAMOURIS, M.; SYNNEFA, A.; KARLESSI, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, v. 85, n. 12, p. 3085–3102, 2011.

SANTAMOURIS, M.; YUN, G. Y. Recent development and research priorities on cool and super cool materials to mitigate urban heat island. Renewable Energy, v. 161, p. 792–807, 2020.

SANTOS, E. I.; MARINOSKI, D. L.; LAMBERTS, R. Influência do ambiente de medição sobre a verificação da absortância de superfícies opacas utilizando um espectrômetro portátil. X Encontro Nacional e VI Encontro Latino Americano de Conforto no Ambiente Construído, p. 660–669, 2009.

STEWART, I. D.; OKE, T. R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, v. 93, n. 12, p. 1879–1900, 2012.

SYNNEFA, A. et al. On the use of cool materials as a heat island mitigation strategy. Journal of Applied Meteorology and Climatology, v. 47, n. 11, p. 2846–2856, 1 nov. 2008.

SYNNEFA, A.; SANTAMOURIS, M.; APOSTOLAKIS, K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy, v. 81, n. 4, p. 488–497, 2007.

TAHA, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, v. 25, n. 2, p. 99–103, 1997.

YAGHOOBIAN NEDA; KLEISSL JAN. Effect of reflectiva pavements on building energy use. Urban Climate, 2012.

ZHU JIAJIE; JAHN WOLFRAM; REIN GUILLERMO. Computer simulation of sunlight concentration due to façade shape. Journal of Building Performance Simulation, 2019.

Published

2023-10-26

How to Cite

CASTELLO, Ana Júlia Pilon; CARVALHO, Marcius Fabius Henriques de; MOTA, Lia Toledo Moreira; PEZZUTO, Claudia Cotrim. THERMAL PERFORMANCE OF URBAN FACADES USING DIFFERENT CERAMIC CLADDINGS. In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–8. DOI: 10.46421/encac.v17i1.4117. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4117. Acesso em: 21 nov. 2024.

Issue

Section

2. Clima e Planejamento Urbano