AUTOMAÇÃO NA QUANTIFICAÇÃO DE CABOS ELETRICOS EM SOFTWARE PARAMÉTRICO BASEADO EM OBJETOS 3D
DOI:
https://doi.org/10.46421/entac.v17i1.1746Palavras-chave:
Electrical project, Information modeling, Automation, Visual programmingResumo
A set of technologies, processes, policies and especially BIM skills are required to enable BIM use: extraction of quantities. However, despite the need for this knowledge, obstacles arise to challenge designers. Electrical cables are not modeled, but only treated as annotations in conduits, and so it is not possible to extract quantities of non-modeled elements. The repetitive process automation is able to help the modeling of construction information and serve for circumventing obstacles in the work routine. The objective of this work is to explore the creation of routines of automation to correlate data of electrical cables with length of conduits to enable the extraction of cables quantities. The methodology is qualitative, and the research strategy is action research. Using Dynamo as a design information processing platform enabled the extraction of cabling quantities from the BIM model. It is observed that the challenges of innovation occur in the daily routine of professionals who need new skills to express creativity and innovation. As a contribution, the research exposes a limitation of Revit specifically on electrical projects that software developers can invest in enhancements.
Referências
BASKERVILLE, R. L. Distinguishing action research from participative casestudies. Journal of Systems and Information Technology, v. 1, n. 1, p. 24 43,1997. Disponível em: <https://doi.org/10.1108/13287269780000733>. Acessoem: 27 jun. 2014.
BRISCOE, D. PARAMETRIC PLANTING GREEN WALL SYSTEM RESEARCH + DESIGNUSING BIM. n. October 2014, p. 333 338, 2017.
BRITO, B.; FERREIRA, E.; COSTA, D. Estimativas de custos com base em BIM ealgorítimos generativos para decisões de projeto. In: Fortaleza. Anais...
Fortaleza: 2017. Disponível em: <https://goo.gl/23qt28>. p.364 371CBIC. Colaboração e integração BIM - Parte 3: Implementação do BIM para Construtoras e Incorporadoras (G. C. B. e Comunicação, Ed.). Brasília:Câmara Brasileira da Indústria da Construção - CBIC, 2016. . Disponível em:<https://goo.gl/KVPxVH>.
FERREIRA, E. A.; COSTA, C. F.; ROSA., L. J. CRIAÇÃO AUTOMÁTICA DE EAP EMBIM A PARTIR DE PROGRAMAÇÃO VISUAL COMPUTACIONAL. In: Fortaleza.
Anais... Fortaleza: 2017. Disponível em: <https://goo.gl/23qt28>.
GIL, A. C. Métodos e técnicas de pesquisa social. 6a Edição ed. São Paulo:Atlas, 2008.
IBRAHIM, K. BIM for FM : Input versus Output data. n. November, 2016.
KHAJA, M.; SEO, J. D.; MCARTHUR, J. J. Optimizing BIM Metadata ManipulationUsing Parametric Tools. Procedia Engineering, v. 145, n. December, p. 259266, 2016.
LU, Y. et al. Building Information Modeling (BIM) for green buildings: A criticalreview and future directions. Automation in Construction, v. 83, n. August, p.
134 148, 2017. Disponível em:<http://dx.doi.org/10.1016/j.autcon.2017.08.024>.
MONTEIRO, A.; MONTEIRO, A. Visual Programming Language for Creating BIMModels with Level of Development 400. In: 4TH BIM INTERNATIONALCONFERENCE, September, São Paulo. Anais... São Paulo: 2016.
SUCCAR, B. Building information modelling framework: A research anddelivery foundation for industry stakeholders. Automation in Construction, v.
18, n. 3, p. 357 375, 2009. Disponível em:<http://dx.doi.org/10.1016/j.autcon.2008.10.003>. Acesso em: 23 abr. 2014.
SUCCAR, B. Building Information Modelling Maturity Matrix. In: Handbook ofResearch on Building Information Modeling and Construction Informatics:Concepts and Technologies. Hershey: IGI Global, 2010. p. 65 103.