Proposta de modelo probabilístico para avaliar o conforto ambiental interno de ambientes

Autores

DOI:

https://doi.org/10.46421/entac.v19i1.2021

Palavras-chave:

Conforto ambiental interno, Desempenho, Redes bayesianas, Modelo da Informação da Construção, Gêmeo Digital

Resumo

Este trabalho adapta um modelo probabilístico que tinha o objetivo de avaliar o conforto ambiental interno de uma edificação. A adaptação proposta muda o foco para um ambiente específico, e aprimora o modelo considerando a coleta de dados monitorados por sensores, tornando a entrada de dados mais complexa. Para tanto, as variáveis do modelo e as relações de causalidade entre elas foram revistas. Além disso, intervalos dos possíveis estados de algumas variáveis foram definidos com base em uma revisão de literatura e normatizações. Os resultados incluem o modelo e uma discussão sobre sua aplicabilidade na criação de um Gêmeo Digital.

Biografia do Autor

Rafaela Bortolini, Universidade Federal de Pelotas

Doutora em Engenharia da Construção pela Universitat Politècnica de Catalunya (UPC), Espanha. Atualmente é professora da Universidade Federal de Pelotas (Pelotas - RS, Brasil).

Luisa Rodrigues Félix Dalla Vecchia, Universidade Federal de Pelotas

Possui PhD em Environmental Design pela University of Calgary (2021). Atualmente é professora da Universidade Federal de Pelotas (Pelotas - RS, Brasil).

Raul Balbinoti Rodrigues, Universidade Federal de Pelotas

Graduando no curso de Arquitetura e Urbanismo pela Universidade Federal de Pelotas (Pelotas - RS, Brasil).

Referências

ABISUGA, A.O.; FAMAKIN, I.O.; OSHODI, O.S. Educational building conditions and the health of users, Construction Economics and Building. 16 (2016) 19–34. doi:10.5130/ajceb.v16i4.4979.

AGHA-HOSSEIN, M.M.; EL-JOUZI, S.; ELMUALIM, A.A.; ELLIS, J.; WILLIAMS, M. Post-occupancy studies of an office environment: Energy performance and occupants’ satisfaction, Building and Environment. 69 (2013) 121–130. doi:10.1016/j.buildenv.2013.08.003.

ALAVI, H.; FORCADA, N.; BORTOLINI, R.; EDWARDS, D.J. Enhancing occupants’ comfort through BIM-based probabilistic approach, Automation in Construction. 123 (2021) 103528. doi:10.1016/j.autcon.2020.103528.

AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS - ASHRAE, Thermal environmental conditions for human occupancy, ANSI/ASHRAE Standard - 55. 7 (2017) 6.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 10152:2017 - Níveis de pressão sonora em ambientes internos a edificações, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5413:1992: Iluminância de Interiores, 1992.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR ISO/CIE 8995-1: Iluminação de ambientes de trabalho - Parte 1: Interior, 2013.

AUFFENBERG, F.; SNOW, S.; STEIN, S.; ROGERS, A. A comfort-based approach to smart heating and air conditioning, ACM Transactions on Intelligent Systems and Technology. 9 (2017). doi:10.1145/3057730.

BLUYSSEN, P.M.; ARIES, M.; VAN DOMMELEN, P. Comfort of workers in office buildings: The European HOPE project, Building and Environment. 46 (2011) 280–288. doi:10.1016/j.buildenv.2010.07.024.

BORDBARI, M.J.; SEIFI, A.R.; RASTEGAR, M. Probabilistic energy consumption analysis in buildings using point estimate method, Energy. 142 (2018) 716–722. doi:10.1016/j.energy.2017.10.091.

BORTOLINI, R. Enhancing building performance: a Bayesian network model to support facility management. Tese (Doutorado em Construction Engineering. Universitat Politècnica de Catalunya (UPC). Barcelona, Espanha, 2019.

BORTOLINI, R.; FORCADA, N. A probabilistic performance evaluation for buildings and constructed assets, Building Research and Information. 0 (2019) 1–18. doi:10.1080/09613218.2019.1704208.

BORTOLINI, R.; FORCADA, N. A probabilistic-based approach to support the comfort performance assessment of existing buildings, Journal of Cleaner Production. 237 (2019) 117720. doi:10.1016/j.jclepro.2019.117720.

BRILAKIS, I.; PAN, Y.; BORRMAN, A.; MAYER, H.-G. Built Environment Digital Twinning, 2019.

CHAKRABORTY, S.; MENGERSEN, K.; FIDGE, C.; MA, L.; LASSEN, D. A Bayesian Network-based customer satisfaction model: a tool for management decisions in railway transport, Decision Analytics. 3 (2016). doi:10.1186/s40165-016-0021-2.

CHEN, J.; AUGENBROE, G.; WANG, Q.; SONG, X. Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation, Energy and Buildings. 146 (2017) 283–294. doi:10.1016/j.enbuild.2017.04.068.

FRONTCZAK, M.; WARGOCKI, P. Literature survey on how different factors influence human comfort in indoor environments, Building and Environment. 46 (2011) 922–937. doi:10.1016/j.buildenv.2010.10.021.

GIVONI, B. Climate considerations in building and urban design, John Wiley & Sons, 1998.

GLAESSGEN, E.H.; STARGEL, D.S. The digital twin paradigm for future NASA and U.S. Air force vehicles, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. (2012) 1–14. doi:10.2514/6.2012-1818.

HOLICKÝ, M.; MARKOVÁ, J.; SÝKORA, M. Forensic assessment of a bridge downfall using Bayesian networks, Engineering Failure Analysis. 30 (2013) 1–9. doi:10.1016/j.engfailanal.2012.12.014.

KAN, C.; ANUMBA, C.J. Digital Twins as the Next Phase of Cyber-Physical Systems in Construction, in: Computing in Civil Engineering 2019, American Society of Civil Engineers, Reston, VA, 2019: pp. 256–264. doi:10.1061/9780784482438.033.

LANGEVIN, J.; WEN, J.; GURIAN, P.L. Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants, Building and Environment. 69 (2013) 206–226. doi:10.1016/j.buildenv.2013.07.017.

MARTÍNEZ, I.; ZALBA, B.; TRILLO-LADO, R.; BLANCO, T.; CAMBRA, R. Casas, Internet of things (Iot) as sustainable development goals (sdg) enabling technology towards smart readiness indicators (sri) for university buildings, Sustainability (Switzerland). 13 (2021). doi:10.3390/su13147647.

NGUYEN, L.D.; TRAN, D.Q.; CHANDRAWINATA, M.P. Predicting Safety Risk of Working at Heights Using Bayesian Networks, Journal of Construction Engineering and Management. 142 (2016) 04016041. doi:10.1061/(asce)co.1943-7862.0001154.

PEARL, J. Probabilistic reasoning in intelligent systems: Networks of plausible inference, Morgan Kaufmann, San Mateo, CA, 1991. doi:10.1016/0020-7101(91)90056-K.

PEARL, J; VERMA, T. A theory of inferred causation, (1994). Disponível em: http://ftp.cs.ucla.edu/pub/stat_ser/r156-reprint.pdf. Acesso em: 12 março 2022.

PREISER, Wolfgang; VISCHER, Jacqueline (Ed.). Assessing building performance. Routledge, 2005.

S.H. Chen, C.A. Pollino, Good practice in Bayesian network modelling, Environmental Modelling & Software. 37 (2012) 134–145. doi:10.1016/j.envsoft.2012.03.012.

SALINI, S.; KENNET, R.S. Bayesian networks of customer satisfaction survey data, Journal of Applied Statistics. 36 (2009) 1177–1189. doi:10.1080/02664760802587982.

TAO, F.; CHENG, J.; QI, Q.; ZHANG, M.; ZHANG, H.; SUI, F. Digital twin-driven product design, manufacturing and service with big data, International Journal of Advanced Manufacturing Technology. 94 (2018) 3563–3576. doi:10.1007/s00170-017-0233-1.

UUSITALO, L. Advantages and challenges of Bayesian networks in environmental modelling, Ecological Modelling. 203 (2007) 312–318. doi:10.1016/j.ecolmodel.2006.11.033.

WARGOKI, P.; PORRAS-SALAZAR, J.A.; CONTRERAS-ESPINOSA, S.; BAHNFLETH,W. The relationships between classroom air quality and children’s performance in school, Building and Environment. 173 (2020) 106749. doi:10.1016/j.buildenv.2020.106749.

Downloads

Publicado

07/11/2022

Como Citar

BORTOLINI, R.; VECCHIA, L. R. F. D.; RODRIGUES, R. B. Proposta de modelo probabilístico para avaliar o conforto ambiental interno de ambientes. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–12. DOI: 10.46421/entac.v19i1.2021. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2021. Acesso em: 14 maio. 2024.

Edição

Seção

Conforto Ambiental e Eficiência Energética