Processamento de Linguagem Natural (PLN) para automatização da checagem de conformidade:

uma investigação do pré-processamento de um código regulatório urbanístico brasileiro

Autores

DOI:

https://doi.org/10.46421/entac.v19i1.2200

Palavras-chave:

Processamento de Linguagem Natural, Automatização, Pré-Processamento, Inteligência Artificial, Código Urbanístico

Resumo

A checagem manual de conformidade de projetos é uma tarefa custosa e sujeita a erros. Os parâmetros contidos nos códigos regulatórios podem ser automaticamente extraídos usando o Processamento de Linguagem Natural (PLN), tornando a checagem mais eficiente e segura. Este estudo investiga uma rotina utilizando técnicas de PLN para o pré-processamento – primeira etapa para extração de informação - de um código regulatório urbanístico brasileiro. Utilizou-se no experimento a linguagem de programação Python e a biblioteca Natural Language Tool Kit (NLTK). Obteve-se uma acurácia de 68% no desempenho do etiquetador, indicando a necessidade de aprimoramentos no pré-processamento para a língua portuguesa.

Biografia do Autor

Paulo Victor Matos Leite de Ávila , Universidade Federal da Bahia

Cursando Arquitetura e Urbanismo na Universidade Federal da Bahia (Salvador - BA, Brasil).

Douglas Malheiro de Brito , Universidade Federal da Bahia

Mestrado em Engenharia Civil pela Universidade Federal da Bahia. Doutorando em Engenharia Civil na Universidade Federal da Bahia (Salvador - BA, Brasil).

Daniele Mota Santos, Universidade Federal da Bahia

Especialização em Educação Inclusiva e Especial com Ênfase em Libras pela Faculdade de Tecnologia e Ciências. Assistente Administrativo na Universidade Federal da Bahia (Salvador - BA, Brasil).

Emerson de Andrade Marques Ferreira, Universidade Federal da Bahia

Doutorado em Engenharia Civil pela Universidade de São Paulo. Professor titular na Universidade Federal da Bahia (Salvador - BA, Brasil).

Referências

Fuchs, S., Amor, R. (2021). Natural Language Processing for Building Code

Interpretation: A Systematic Literature Review

Beach, T. H, Hippolyte, J., Rezgui, Y. 2020. Towards the adoption of automated

regulatory compliance checking in the built environment. Automation in Construction.

, 103285.

Nawari, N. 2012. The Challenge of Computerizing Building Codes in a BIM Environment.

Comput. Civ. Eng. 1, 285–292.5

Olsson, P., Axelsson, J., Hooper, M., Harrie, L. 2018. Automation of building permission

by integration of BIM and geospatial data. International Journal of Geo-Information. 7

(8), 307.

Nawari, N. O. (2019). Generalized Adaptive Framework for Computerizing the Building

Design Review Process, Journal of architecture Engineering, 26(1), 04019026.

Altintas, Y. D., Ilal, M. 2021. Loose coupling of GIS and BIM data models for automated

compliance checking against zoning codes, Automation in Construction, 128, p. 103743.

Kim, I., Choi, J., Teo, E.A.L., Sun, H. 2020. Development of KBIM e-submission

prototypical system for the openBIM-based building permit framework. Journal of Civil

Engineering and Management. 26 (8), 744-756.

Shahi, K., McCabe, B.Y., Shahi, A.. Framework for Automated Model-Based e-Permitting

System for Municipal Jurisdictions, Journal of Management in Engineering, 35 (6),

2019

Salama, D. M.; El-Gohary, N.M. Semantic Text Classification for Supporting Automated

Compliance Checking in Construction, Journal of Computing in Civil Engineering, 30(1),

2014

Nieves, T.; Mendonça, E. A. de.; Ferreira, S. L.. Processamento de Linguagem Natural na

indústria AEC: uma abordagem para tradução de regulamentos edilícios brasileiros

para o domínio BIM. In: SIMPÓSIO BRASILEIRO DE TECNOLOGIA DA INFORMAÇÃO E

COMUNICAÇÃO NA CONSTRUÇÃO, 3., 2021, Uberlândia. Anais [...]. Porto Alegre: ANTAC,

p. 1-14. Disponível em: https://eventos.antac.org.br/index.php/sbtic/article/view/613, accessed em: 03 ago. 2021.

Barbosa, J.; Vieira, J.; Santos, R.; Junior, G.; Muniz, M.; Moura, R. Introdução ao

Processamento de Linguagem Natural usando Python. In: III Escola Regional de

Informática do Piauí. Livro Anais - Artigos e Minicursos. 2017. P. 336-360.

Rodriguez, M. Bezerra, B. (2020). Processamento de Linguagem Natural para

Reconhecimento de Entidades Nomeadas em Textos Jurídicos de Atos Administrativos

(Portarias). Revista de Engenharia e Pesquisa Aplicada. Special Edition, p. 67-77.

Zhang, J.; El-Gohary, N. M. Extending Building Information Models Semi automatically

Using Semantic Natural Language Processing Techniques, Journal of Computing in Civil

Engineering, 30(5), C4016004.

NLTK Project. (n.d.). Natural Language Toolkit — NLTK 3.6.2 documentation. [online]

Available at: https://www.nltk.org/index.html, accessed March 2022.

Zhang, J.; El-Gohary, N. M. Semantic NLP-Based Information Extraction from

Construction Regulatory Documents for Automated Compliance Checking, Journal of

Computing in Civil Engineering, 30(2), 04015014.

Xue, X.; Zhang, J. Evaluation of Seven Part-of-Speech Taggers in Tagging Building Codes:

Identifying the Best Performing Taggers and Common Soucers of Erros. In. Construction

Research Congress 2020. 2020. Tempe. Construction Research Congress 2020:

Computer Applications. p.498-507

Aluísio, S. M.; Pelizzoni, J. M.; Marchi, A. R.; Oliveira, L. H.; Manenti, R. E.;

Marquivafável, V. (2003). An Account of the Challenge of Tagging a Reference Corpus

for Brazilian Portuguese, pages 110–117. Springer Berlin Heidelberg, Berlin, Heidelberg.

Downloads

Publicado

2022-11-07

Como Citar

ÁVILA , Paulo Victor Matos Leite de; BRITO , Douglas Malheiro de; SANTOS, Daniele Mota; FERREIRA, Emerson de Andrade Marques. Processamento de Linguagem Natural (PLN) para automatização da checagem de conformidade: : uma investigação do pré-processamento de um código regulatório urbanístico brasileiro. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–12. DOI: 10.46421/entac.v19i1.2200. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2200. Acesso em: 22 nov. 2024.

Artigos Semelhantes

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.