Efeito da molaridade de ácido fosfórico em geopolímeros ácidos
DOI:
https://doi.org/10.46421/entac.v20i1.5738Palavras-chave:
Geopolímeros, Argamassa Geopolimérica, Ácido Fosfórico, MetacaulimResumo
Geopolímeros sintetizado em meio alcalino, a partir de hidróxido de sódio e silicato de sódio, são largamente estudados na literatura. Por sua vez, matrizes geopoliméricas desenvolvidas em meio ácido são inovações recentes, com pouco referencial teórico e muitas lacunas. O ácido fosfórico é um dos ácidos mais adotados para geopolimerização, entretanto, a sua molaridade ideal não é um conhecimento consolidado, sobretudo em matrizes de maior complexidade, como argamassas e concretos. Assim, o objetivo desse artigo é investigar os efeitos das concentrações de 8, 10 e 12 mols de ácido fosfórico na confecção de argamassas geopoliméricas desenvolvidas com metacaulim e areia natural. As argamassas produzidas foram curadas em temperatura ambiente e a 60°C. Em seguida, foi aferido o pH do material ao longo do tempo e sua resistência à compressão adquirida aos 28 dias. A partir desta análise, notou-se que quanto maior a molaridade do ácido, menor a resistência das argamassas. Além disso, ao final dos 28 dias os materiais continuaram com comportamento ácido, posto que o decaimento do pH foi irrisório.
Referências
COSTA, F. N.; RIBEIRO, D. V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, 26, 2020.
CARVALHO, A. R. D. et al. Proposition of geopolymers obtained through the acid activation of iron ore tailings with phosphoric acid. Construction and Building Materials, 403, 2023.
CUI, X. M. et al. A novel aluminosilicate geopolymer material with low dieletric loss. Materials Chemistry and Physics, 130, 2011. 1-4.
DAVIDOVITS, J. Geopolymer Chemistry and Applications. 5. ed. França: Institut Géopolymère, 2020.
GORYUNOVA, K. et al. Phosphate-activated geopolymers: advantages and application. RSC Advances, 43, 2023.
TCHAKOUTÉ, H. K.; RÜSCHER, C. H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. Applied Clay Science, 140, Maio 2017. 81-87.
KAZE, C. R. et al. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cement and Concrete Research, 140, Fevereiro 2021.
LOUATI, S. et al. Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay. Applied Clay Science, 101, 2014. 60-67.
WANG, Y.-S. et al. Phosphate-based geopolymer: Formation mechanism and thermal stability. Materials Letters, March 2017. 209-212.
PROVIS, J. L.; DEVENTER, J. S. Geopolymers: Structure, processing, properties and industrial applications. [S.l.]: CRC Press, 2009.
WU, H. et al. Effects of Spodumene Flotation Tailings on Mechanical Properties of Acid-Based Geopolymer Mortar. Minerals, 13, n. 2, 2023. 150.
ABNT. NBR 7214: Areia normal para ensaio de cimento - Especificação. Rio de Janeiro. 2015.
ABNT. NBR 17054: Agregados - Determinação do material fino que passa através da peneira 75 um por lavagem. Rio de Janeiro. 2022.
ABNT. NBR 52: Agregado miúdo - Determinação da massa específica e massa específica. Rio de Janeiro. 2009.
ABNT. NBR 16973: Agregados - Determinação do material fino que passa através da peneira 75 um por lavagem. Rio de Janeiro. 2021.
ABNT. NBR 7218: Agregados – Determinação do teor de argila em torrões e materiais friáveis. ABNT. Rio de Janeiro. 2019.
ABNT. NBR NM 49: Agregado miúdo - Determinação de impirezas orgânicas. ABNT. Rio de Janeiro. 2001.
ABNT. NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro. 2005.
EMBRAPA SOLOS. Manual de Métodos de Análise de Solo. Embrapa. Brasília. 2017.
ZAILANI, W. W. A. et al. Physico-mechanical properties of geopolymer mortars for repair applications: Impact of binder to sand ratio. Construction and Building Materials, 412, 2024.
CARVALHO, A. R. D. et al. Influência do efeito fíler do pó de mármore na produção de concretos para pavimentos intertravados. Ambiente Construído, Porto Alegre, 23, n. 4, Outubro/Dezembro 2023. 217-239.
SUPRIYA et al. Low-CO2 emission strategies to achieve net zero target in cement sector. Journal of Cleaner Production, 417, 2023.
DOAN, D. T. et al. A critical comparison of green building rating.. Building and Environment, 123, 2017. 243-260.
CHANDAR, S. P.; SANTHOSH, R. Partial replacement of cement with alternative cementitious material in the production of concrete: A review. Materials Today: Proceedings, 68, Part 6, 2022. 2421-2426.
ABNT. NBR 15894-1: Metacaulim para uso com cimento Portland em concreto, argamassa e pasta. Parte 1: Requisitos. Rio de Janeiro. 2010.
WU, H. et al. Effects of Spodumene Flotation Tailings on Mechanical Properties of Acid-Based Geopolymer Mortar. Minerals, 19 January 2023.
ABNT. NBR 7211: Agregados para concreto - Requisitos. Rio de Janeiro. 2022.