Projeções futuras: Desempenho térmico de duas envoltórias para uma habitação unifamiliar em São Paulo
DOI:
https://doi.org/10.46421/entac.v20i1.5958Palavras-chave:
Arquivos climáticos futuros, Mudanças climáticas, Desempenho térmico, Simulação computacionalResumo
Devido às mudanças climáticas, é essencial compreender os impactos do clima futuro nas edificações. Com base no projeto CORDEX, foram adotadas seis projeções de modelos climáticos considerando três períodos (2010, 2050 e 2090), sob dois cenários de emissão distintos: RCP2.6 (mitigação de emissões) e RCP8.5 (emissões elevadas). Frente a isso, o objetivo deste trabalho foi analisar o comportamento dessas projeções para a cidade de São Paulo, identificando os modelos climáticos extremos. Para isso, realizou-se simulações termo energéticas de uma habitação unifamiliar com duas diferentes envoltórias. Por meio de análises estatísticas, foram constatados desvios maiores nas projeções do RCP8.5. Também, notou-se que os arquivos desenvolvidos com o modelo regional regcm apresentam temperaturas mais altas que remo. Identificou-se a combinação HadGEM2-regcm como o modelo extremo quente, enquanto os extremos amenos foram NorESM1-remo (RCP8.5) e MPI-ESM remo (RCP2.6). Apesar dos modelos manifestarem comportamento similar em ambas as envoltórias, a edificação com sistema construtivo de concreto apresentou maior carga térmica total, enquanto a de steel frame revelou temperaturas operativas máximas maiores.
Referências
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC). (2023). AR6 Synthesis Report: Climate Change 2023. Disponível em: https://www.ipcc.ch/report/sixth-assessment-report-cycle/. Acesso em: 13 de maio de 2024.
SANTAMOURIS, M; VASILAKOPOULOU, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. e-Prime – Advances in Electrical Engineering, Electronics and Energy, v. 1, p. 100002, 2021. DOI: https://doi.org/10.1016/j.prime.2021.100002.
CRAWLEY, D; LAWRIE, L. Our climate conditions are already changing – Should we care? Building Services Engineering Research and Technology, v. 42, n. 5, p. 507-516, 2021. DOI: https://doi.org/10.1177/0143624421100427.
P. TOOTKABONI, M.;, BALLARINI, I;., ZINZI, M.; CORRADO, V. (2021). A comparative analysis of different future weather data for building energy performance simulation. Climate, 9(2), 1–16. DOI: https://doi.org/10.3390/cli9020037.
F. Giorgi et al., “The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis,” Bulletin of the American Meteorological Society, vol. 103, no. 2, pp.E293–E310, Feb. 2022, DOI: https://doi.org/10.1175/BAMS-D-21-0119.1 .
D. P. Van Vuuren et al., “The representative concentration pathways: an overview,” Climatic Change, vol. 109, no. 1–2, pp. 5–31, Nov. 2011, DOI: 10.1007/s10584-011-0148-z.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp. DOI: https://doi.org/10.1017/CBO9781107415324.
EYRING, V., BONY, S., MEEHL, G., SENIOR, C., STEVENS, B., STOUFFER, R., TAYLOR, K., “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization,” Geosci. Model Dev., vol. 9, no. 5, pp. 1937–1958, May 2016, doi: 10.5194/gmd-9-1937-2016.
RUMMUKAINEN, M., “Added value in regional climate modeling,” WIREs Clim Change, vol. 7, pp. 145–159, 2016. DOI: https://doi.org/10.1002/wcc.378.
DI LUCA, A.; DE ELÍA, R.; LAPRISE, R. “Potential for small scale added value of RCM’s downscaled climate change signal,” Clim Dyn, vol. 40, no. 3–4, pp. 601–618, Feb. 2013, DOI: https://doi.org/10.1007/s00382-012-1415-z .
BRACHT, M. K., OLINGER, M. S., KRELLING, A. F., GONÇALVES, A. R., MELO, A. P., LAMBERTS, R. “Multiple regional climate model projections to assess building thermal performance in Brazil: Understanding the uncertainty,” Journal of Building Engineering, v. 88, p. 109248, July 2024. DOI: https://doi.org/10.1016/j.jobe.2024.109248.
ISO, ISO 15927-4: Hygrothermal Performance of Buildings — Calculation and Presentation of Climatic Data — Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling, 2005.
BRACHT, M. K., OLINGER, M. S., KRELLING, A. F., GONÇALVES, A. R., MELO, A. P., LAMBERTS, R. Brazil - Future weather files for building energy simulation (1.0) [Data set]. 2023. DOI: https://doi.org/10.5281/zenodo.10015137.
The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, 2011. DOI: https://doi.org/10.5194/gmd-4-723-2011
Giorgetta, M. A., et al. (2013), Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572–597, doi:10.1002/jame.20038.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Jacob, D., Podzun, R. Sensitivity studies with the regional climate model REMO. Meteorl. Atmos. Phys. 63, 119–129 (1997). https://doi.org/10.1007/BF01025368.
Jacob, D.; Elizalde, A.; Haensler, A.; Hagemann, S.; Kumar, P.; Podzun, R.; Rechid, D.; Remedio, A.R.; Saeed, F.; Sieck, K.; et al. Assessing the Transferability of the Regional Climate Model REMO to Different COordinated Regional Climate Downscaling EXperiment (CORDEX) Regions. Atmosphere 2012, 3, 181-199. https://doi.org/10.3390/atmos3010181.
Giorgi F, Coppola E, Solmon F, Mariotti L and others (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7-29. https://doi.org/10.3354/cr01018.
TRIANA, A.; LAMBERTS, R.; SASSI, P. “Characterisation of representative building typologies for social housing projects in Brazil and its energy performance.” Energy Policy, v.87, p. 524–541. 2015. DOI: http://doi.org/10.1016/j.enpol.2015.08.041.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575-1: Edificações habitacionais — Desempenho Parte 1: Requisitos gerais. Rio de Janeiro, 2021.