Impressão 3D na construção civil: uma revisão sistemática com foco no desempenho termoenergetico

Autores

DOI:

https://doi.org/10.46421/entac.v20i1.6068

Palavras-chave:

Manufatura aditiva, Impressão 3D., Desempenho da edificação, Eficiência energética, Revisão sistemática

Resumo

A construção civil tem passado por diversas transformações devido ao emprego da digitalização e automação. Um exemplo é a manufatura aditiva, também chamada de impressão 3D. Este artigo visa identificar os principais métodos de análise térmica e energética que tem sido utilizado para avaliar o desempenho dessa tecnologia aplicada no ambiente construído. Para isso, foi realizada uma Revisão Sistemática da Literatura e análise bibliométrica. Os resultados indicam que uma diversidade de métodos tem sido empregados, como: estudos de caso; estudos experimentais da composição do material de impressão; ensaios laboratoriais para determinação das propriedades físicas do material de impressão; construção de protótipos (geralmente painéis) para testes e monitoramento; simulações computacionais; estudo e teste de diferentes geometrias de vedação com e sem material de isolamento térmico adicionado; análise de elementos finitos da seção de parede; dentre outros. A sistematização e análise de como esses métodos tem sido empregados e os principais resultados obtidos é a principal contribuição deste estudo.

Biografia do Autor

Luana Toralles Carbonari, Universidade Estadual de Londrina

Doutorado em Arquitetura e Urbanismo pela
Universidade Estadual de Londrina. Professor Colaborador Adjunto na
Universidade Estadual de Londrina (Londrina - PR, Brasil).

 

Berenice Martins Toralles, Universidade Estadual de Londrina

Doutorado em Enginyeria de Camins Canals i Ports pela Universitat Politècnica de Catalunya, Espanha. Professor Associado na Universidade Estadual de Londrina (Londrina - PR, Brasil).

Thalita Gorban Ferreira Giglio, Universidade Estadual de Londrina

Doutorado em Engenharia Civil pela Universidade Federal de Santa Catarina. Professor Adjunto na Universidade Estadual de Londrina (Londrina - PR, Brasil).

Referências

INTERNATIONAL ENERGY AGENCY. Global energy & CO2 status report. 2018. Disponível em: https://www.iea.org/reports/global-energy-co2-status-report-2019. Acesso em: 23 mai. 2024.

AL-OBAIDI, K. M. et al. Biomimetic building skins: An adaptive approach. Renewable and Sustainable Energy Reviews, v. 79, p. 1472–1491, 2017. DOI: https://doi.org/10.1016/j.rser.2017.05.028

ALHUMAYANI, H. et al. Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete. Journal of Cleaner Production, v. 270, p. 122463, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.122463

WENG, Y. et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach. Journal of Cleaner Production, v. 261, p. 121245, 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.121245

PESSOA, S. et al. 3D printing in the construction industry-A systematic review of the thermal performance in buildings. Renewable & Sustainable Energy Reviews, v. 141, 2021. DOI: https://doi.org/10.1016/j.rser.2021.110794.

NGO, T.D. et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. v. 143, p. 172–196, 2018. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012.

PAUL, S.C. et al. A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp. J. v. 24, p. 784–798, 2018. DOI: https://doi.org/10.1108/RPJ-09-2016-0154.

LI, V.C. et al. On the emergence of 3D printable Engineered, strain hardening cementitious composites (ECC/SHCC). Cement Concr. Res. V. 132, p. 106038, 2020. DOI: https://doi.org/10.1016/j.cemconres.2020.106038.

LU, B. A systematical review of 3D printable cementitious materials. Construct. Build. Mater. v. 207, p. 477–490, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.144.

KHAN, S.A.; KOÇ, M.; AL-GHAMDI, S.G. Sustainability assessment, potentials and challenges of 3D printed concrete structures: a systematic review for built environmental applications. J. Clean. Prod. v. 303, p. 127027, 2021. DOI: https://doi.org/10.1016/j.jclepro.2021.127027.

HOSSAIN, M.A. et al. A review of 3D printing in construction and its impact on the labor market. Sustainability v. 12, p. 1–21, 2020. DOI: https://doi.org/10.3390/su12208492.

TOBI, A.L.M. et al. Cost viability of 3D printed house in UK. In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2018. DOI: https://doi.org/10.1088/1757-899X/319/1/012061.

ZHANG, X. et al. Large-scale 3D printing by a team of mobile robots. Autom. ConStruct. v. 95, p. 98–106, 2018. DOI: https://doi.org/10.1016/j.autcon.2018.08.004.

SOLTAN, D.G.; LI, V.C. A self-reinforced cementitious composite for building-scale 3D printing. Cement Concr. Compos. v. 90, p. 1–13, 2018. DOI: https://doi.org/10.1016/ j.cemconcomp.2018.03.017.

XIA, M.; SANJAYAN, J. Method of formulating geopolymer for 3D printing for construction applications, Mater. Des. v. 110, p. 382–390, 2016. DOI: https://doi.org/ 10.1016/j.matdes.2016.07.136.

FERENHOF, H. A.; FERNANDES, R. F. Desmistificando a revisão de literatura como base para redação científica: método SFF. Revista ACB, Florianópolis, v. 21, n. 3, p. 550–563, 2016. DOI: https://doi.org/10.13140/RG.2.1.1937.2401/1.

YANG, S. et al. Novel proposal to overcome insulation limitations due to nonlinear structures using 3D printing: Hybrid heat-storage system. Energy and Buildings, v. 197, p. 177–187, 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.05.048.

ALGHAMDI, H.; NEITHALATH, N. Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials. Cement & Concrete Composites, v. 104, 2019. DOI: https://doi.org/10.1016/j.cemconcomp.2019.103377.

LI, L. et al. 3D face-centered-cubic cement-based hybrid composites reinforced by tension-resistant polymeric truss network. Automation in Construction, v. 120, 2020. DOI: https://doi.org/10.1016/j.autcon.2020.103380.

MAHADEVAN, M.; FRANCIS, A.; THOMAS, A. A simulation-based investigation of sustainability aspects of 3D printed structures. Journal of Building Engineering, v. 32, 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101735.

ALKHALIDI, A.; HATUQAY, D. Energy efficient 3D printed buildings: Material and techniques selection worldwide study. Journal of Building Engineering, v. 30, 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101286.

HE, Y. et al. Energy-saving potential of 3D printed concrete building with integrated living wall. Energy and Buildings, v. 222, 2020. DOI: https://doi.org/10.1016/j.enbuild.2020.110110.

MARAIS, H. et al. Computational assessment of thermal performance of 3D printed concrete wall structures with cavities. Journal of Building Engineering, v. 41, 2021. DOI: https://doi.org/10.1016/j.jobe.2021.102431.

SUNTHARALINGAM, T. et al. Energy Performance of 3D-Printed Concrete Walls: A Numerical Study. Buildings, v. 11, n. 10, p. 432, 2021a. DOI: https://doi.org/10.3390/buildings11100432.

SUN, J. et al. Experimental study on the thermal performance of a 3D printed concrete prototype building. Energy and Buildings, [s. l.], v. 241, 2021. DOI: https://doi.org/10.1016/j.enbuild.2021.110965.

SONG, J. et al. Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, v. 263, 2021. DOI: https://doi.org/10.1016/j.compstruct.2020.113536.

SUNTHARALINGAM, T. et al. Numerical Study of Fire and Energy Performance of Innovative Light-Weight 3D Printed Concrete Wall Configurations in Modular Building System. Sustainability, v. 13, n. 4, 2021b. DOI: https://doi.org/10.3390/su13042314.

ALZAHRANI, A. A.; ALGHAMDI, A. A.; BASALAH, A. A. Computational Optimization of 3D-Printed Concrete Walls for Improved Building Thermal Performance. Buildings, v. 12, n. 12, p. 2267, 2022. DOI: https://doi.org/10.3390/buildings12122267.

NEMOVA, D. et al. Experimental Study on the Thermal Performance of 3D-Printed Enclosing Structures. Energies, v. 15, n. 12, p. 4230, 2022. DOI: https://doi.org/10.3390/en15124230.

EBRAHIMI, M. et al. Investigation of thermal performance and life-cycle assessment of a 3D printed building. Energy and Buildings, v. 272, p. 112341, 2022. DOI: https://doi.org/10.1016/j.enbuild.2022.112341.

AYEGBA, B. O. et al. Resource Efficiency and Thermal Comfort of 3D Printable Concrete Building Envelopes Optimized by Performance Enhancing Insulation: A Numerical Study. Energies, v. 15, n. 3, 2022. DOI: https://doi.org/10.3390/en15031069.

SALANDIN, A. et al. The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance. Sustainability, v. 14, n. 20, 2022. DOI: https://doi.org/10.3390/su142013204.

BRIELS, D. et al. Thermal Optimization of Additively Manufactured Lightweight Concrete Wall Elements with Internal Cellular Structure through Simulations and Measurements. Buildings, v. 12, n. 7, 2022. DOI: https://doi.org/10.3390/buildings12071023.

ARAÚJO, R. A. et al. Thermal performance of cement-leca composites for 3D printing. Construction and Building Materials, v. 349, p. 128771, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128771.

MARIN-MONTIN, J. et al. Thermomechanical Performance Analysis of Novel Cement-Based Building Envelopes with Enhanced Passive Insulation Properties. Materials, v. 15, n. 14, 2022. DOI: https://doi.org/10.3390/ma15144925.

TINOCO, M. P. et al. Life cycle assessment (LCA) and environmental sustainability of cementitious materials for 3D concrete printing: A systematic literature review. Journal of Building Engineering, v. 52, p. 104456, 2022. DOI: https://doi.org/10.1016/j.jobe.2022.104456.

Downloads

Publicado

2024-10-07

Como Citar

CARBONARI, Luana Toralles; TORALLES, Berenice Martins; GIGLIO, Thalita Gorban Ferreira. Impressão 3D na construção civil: uma revisão sistemática com foco no desempenho termoenergetico. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–18. DOI: 10.46421/entac.v20i1.6068. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/6068. Acesso em: 3 dez. 2024.

Edição

Seção

Conforto Ambiental e Eficiência Energética

Artigos mais lidos pelo mesmo(s) autor(es)