Aproveitamento de resíduos da indústria alimentícia para a produção de materiais cimentícios sustentáveis
DOI:
https://doi.org/10.46421/entac.v20i1.6279Palavras-chave:
Cimento Portland, terra diatomácea, resíduo sólido, filtragem , SilícioResumo
O potencial da terra diatomácea como um resíduo aproveitável, proveniente de processos de filtragem, se dá devido ao seu alto teor de silício e morfologia favorável para reações químicas. Sua granulometria refinada e estrutura amorfa indicam alta reatividade. Deste modo, foi explorada a aplicação deste resíduo como substituto parcial ao cimento Portland, visando obter um material com propriedades mecânicas, boa durabilidade e menores impactos ambientais associados à destinação de resíduos e à emissão de CO2. A dosagem da argamassa foi realizada substituindo o cimento Portland por até 25% de resíduo diatomáceo. Ensaios de resistência à compressão e absorção de água foram realizados nos corpos de prova moldados com o traço estabelecido, comparando seu desempenho com o do cimento Portland puro. O material desenvolvido ficou próximo do limite normativo para cimentos de classe 32, ficando apenas 5% abaixo do exigido. Esse resultado demonstra o enorme potencial da utilização de resíduos na produção de materiais cimentícios sustentáveis, reforçando a viabilidade técnica e a promessa de um futuro mais verde e inovador para a construção civil.
Referências
A. Ashraf, R. Ramamurthy, E.R. Rene, Wastewater treatment and resource recovery technologies in the brewery industry: Current trends and emerging practices, Sustain. Energy Technol. Assessments 47 (2021) 101432. https://doi.org/10.1016/J.SETA.2021.101432.
S.V. Bonato, D. Augusto de Jesus Pacheco, C. Schwengber ten Caten, D. Caro, The missing link of circularity in small breweries’ value chains: Unveiling strategies for waste management and biomass valorization, J. Clean. Prod. 336 (2022) 130275. https://doi.org/10.1016/J.JCLEPRO.2021.130275.
J.Y. Richard Liew, M.-X. Xiong, B.-L. Lai, Special considerations for high strength materials, Des. Steel-Concrete Compos. Struct. Using High-Strength Mater. (2021) 125–142. https://doi.org/10.1016/B978-0-12-823396-2.00011-3.
J.H. Ideker, K.L. Scrivener, H. Fryda, B. Touzo, Calcium Aluminate Cements, Lea’s Chem. Cem. Concr. (2019) 537–584. https://doi.org/10.1016/B978-0-08-100773-0.00012-5.
P.-C. Aïtcin, Supplementary cementitious materials and blended cements, Sci. Technol. Concr. Admixtures (2016) 53–73. https://doi.org/10.1016/b978-0-08-100693-1.00004-7.
L.F. de Magalhães, S. França, M. dos S. Oliveira, R.A.F. Peixoto, S.A.L. Bessa, A.C. da S. Bezerra, Iron ore tailings as a supplementary cementitious material in the production of pigmented cements, J. Clean. Prod. 274 (2020) 123260. https://doi.org/10.1016/j.jclepro.2020.123260.
M.L.F. Martins, R.R. Barreto, P.R.R. Soares Junior, I.P. Pinheiro, A.C. da S. Bezerra, Metal magnesium industry waste for partial replacement of Portland cement, Rev. IBRACON Estruturas e Mater. 13 (2020) 1–9. https://doi.org/10.1590/s1983-41952020000600011.
L.R.C. Tavares, J.F.T. Junior, L.M. Costa, A.C. da Silva Bezerra, P.R. Cetlin, M.T.P. Aguilar, Influence of quartz powder and silica fume on the performance of Portland cement, Sci. Rep. 10 (2020) 1–15. https://doi.org/10.1038/s41598-020-78567-w.
B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
B. Lothenbach, K. Scrivener, R.D. Hooton, Supplementary cementitious materials, Cem. Concr. Res. 41 (2011) 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
M.L.F. Martins, P.R.R. Soares Junior, T. Henrique da Silva, P. de Souza Maciel, I. Peixoto Pinheiro, A.C.S. Bezerra, Magnesium industry waste and red mud to eco-friendly ternary binder: Producing more sustainable cementitious materials, Constr. Build. Mater. 310 (2021) 125172. https://doi.org/10.1016/J.CONBUILDMAT.2021.125172.
N.C. Gomes Silveira, M.L. Figueiredo Martins, A.C. da S. Bezerra, F. Gabriel da Silva Araújo, Ecological geopolymer produced with a ternary system of red mud, glass waste, and Portland cement, Clean. Eng. Technol. 6 (2022) 100379. https://doi.org/10.1016/J.CLET.2021.100379.
L.R.C. Tavares, J.F.T. Junior, L.M. Costa, A.C. da Silva Bezerra, P.R. Cetlin, M.T.P. Aguilar, Influence of quartz powder and silica fume on the performance of Portland cement, Sci. Reports 2020 101 10 (2020) 1–15. https://doi.org/10.1038/s41598-020-78567-w.
M.H. Samarakoon, P.G. Ranjith, V.R.S. De Silva, Effect of soda-lime glass powder on alkali-activated binders: Rheology, strength and microstructure characterization, (2020). https://doi.org/10.1016/j.conbuildmat.2020.118013.
R. Siddique, N. Chahal, Use of silicon and ferrosilicon industry by-products (silica fume) in cement paste and mortar, Resour. Conserv. Recycl. 55 (2011) 739–744. https://doi.org/10.1016/J.RESCONREC.2011.03.004.
X. Zhang, X. Guan, C. Ma, Characterization of hydration depths of cement particles with different sizes in hardened cement-based materials, Constr. Build. Mater. 300 (2021) 123986. https://doi.org/10.1016/J.CONBUILDMAT.2021.123986.
V.T. Nguyen, S.Y. Lee, S.Y. Chung, J.H. Moon, D.J. Kim, Effects of cement particle distribution on the hydration process of cement paste in three-dimensional computer simulation, Constr. Build. Mater. 311 (2021) 125322. https://doi.org/10.1016/J.CONBUILDMAT.2021.125322.
ABNT, NBR 7215 - Cimento Portland - Determinação da resistência à compressão, Assoc. Bras. NORMAS TÉCNICAS (2019).
ABNT, NBR 5752 - Materiais pozolânicos - Determinação do índice de desempenho com cimento Portland aos 28 dias., Assoc. Bras. NORMAS TÉCNICAS (2014).
ABNT, NBR 16697 - Cimento Portland - Requisitos, Assoc. Bras. NORMAS TÉCNICAS (2018).
S.N. Shah, K.H. Mo, S.P. Yap, M.K.H. Radwan, A. El-Shafie, Chemically treated silica aerogel for the use in lightweight cementitious composite, Case Stud. Constr. Mater. 18 (2023) e01742. https://doi.org/10.1016/J.CSCM.2022.E01742.
Z. Bayer Öztürk, T. Çam, Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste, Mater. Chem. Phys. 307 (2023) 128112. https://doi.org/10.1016/J.MATCHEMPHYS.2023.128112.
Y. Liao, W. Li, B. Da, Y. Meng, D. Chen, Research on properties of waste oyster shell mortar: The effect of calcination temperature of oyster shell powder, Case Stud. Constr. Mater. 19 (2023) e02639. https://doi.org/10.1016/J.CSCM.2023.E02639.
E. Özçelikci, A. Oskay, İ.R. Bayer, M. Şahmaran, Eco-hybrid cement-based building insulation materials as a circular economy solution to construction and demolition waste, Cem. Concr. Compos. 141 (2023) 105149. https://doi.org/10.1016/J.CEMCONCOMP.2023.105149.
H.A. Subhani, R.A. Khushnood, S. Shakeel, Synthesis of recycled bricks containing mixed plastic waste and foundry sand: Physico-mechanical investigation, Constr. Build. Mater. 416 (2024) 135197. https://doi.org/10.1016/J.CONBUILDMAT.2024.135197.
L.A.S. de Aquino, T.R.C. Silva, M. Teixeira Marvila, A.R.G. de Azevedo, Agro-industrial waste from corn straw fiber: Perspectives of application in mortars for coating and laying blocks based on Ordinary Portland cement and hydrated lime, Constr. Build. Mater. 353 (2022) 129111. https://doi.org/10.1016/J.CONBUILDMAT.2022.129111.
V.F. Lotfy, A.H. Basta, E.S. Shafik, Assessment of the effect of different pulping by-products on enhancing the reuse of rubber waste in producing of cement-mortar, Int. J. Biol. Macromol. 256 (2024) 128205. https://doi.org/10.1016/J.IJBIOMAC.2023.128205.
X. Ma, J. Pan, J. Cai, Z. Zhang, J. Han, A review on cement-based materials used in steel structures as fireproof coating, Constr. Build. Mater. 315 (2022) 125623. https://doi.org/10.1016/J.CONBUILDMAT.2021.125623.