Concretos Ecoeficientes – Uma oportunidade de valoração do pó de RCD
DOI:
https://doi.org/10.46421/entac.v20i1.6394Palavras-chave:
Cimento ecoeficiente, Empacotamento de partículas, Pozolana, Pó reciclado, Baixo carbonoResumo
A utilização de materiais cimentícios suplementares (MCS) combinada a técnicas de dosagem otimizadas são indispensáveis para o cumprimento das premissas de descarbonizar e desmaterializar, essenciais para o desenvolvimento sustentável na construção civil. Diante disto este estudo objetiva analisar o potencial de incorporação ao concreto de pós (Φ< 0,15mm) de resíduos de construção e demolição (RCD), oriundos de resíduos de concreto (PC) e cerâmica vermelha (PV). Analisou-se as características físico-químicos e a reatividade dos pós, sendo empregados como MCS na dosagem de concretos pelo método de Alfred (CV - concreto com pó cerâmico vermelho) e (CC - concreto com pó de concreto), analisados quanto à resistência à compressão aos 28 e 180 dias, resistividade elétrica aos 28 dias, e seus indicadores ambientais. Verificou-se que o pó cerâmico atua como pozolana, e o pó de concreto tem efeito de fíler. O consumo de ligante foi reduzido em 43% e 33%, com índices de carbono de 5,85 e 6,73 kg de CO2/m³/MPa (para CV e CC), a e classe de resistência C50 aos 28 dias, com risco insignificante de corrosão, evidenciando o potencial de incorporação dos pós de RCD, somado a otimização da dosagem possibilitaram concretos de alto desempenho.
Referências
S. Sbahieh, M. Zaher Serdar, S.G. Al-Ghamdi, Decarbonization strategies of building materials used in the construction industry, Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.08.346.
S. Barbhuiya, F. Kanavaris, B.B. Das, M. Idrees, Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development, J. Build. Eng. 86 (2024) 108861. https://doi.org/10.1016/j.jobe.2024.108861.
A. Adesina, Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environ. Challenges. 1 (2020) 100004. https://doi.org/10.1016/j.envc.2020.100004.
B. Lu, C. Shi, J. Zhang, J. Wang, Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement, Constr. Build. Mater. 186 (2018) 699–708. https://doi.org/10.1016/j.conbuildmat.2018.07.159.
M.R. Munaro, S.F. Tavares, A review on barriers, drivers, and stakeholders towards the circular economy: The construction sector perspective, Clean. Responsible Consum. 8 (2023) 100107. https://doi.org/10.1016/J.CLRC.2023.100107.
L. Lima, E. Trindade, L. Alencar, M. Alencar, L. Silva, Sustainability in the construction industry: A systematic review of the literature, J. Clean. Prod. 289 (2021) 125730. https://doi.org/10.1016/j.jclepro.2020.125730.
I. Lande, R.T. Terje, Comprehensive sustainability strategy for the emerging ultra-high-performance concrete (UHPC) industry, Clean. Mater. 8 (2023) 100183. https://doi.org/10.1016/j.clema.2023.100183.
GCCA, Concrete Future - Roadmap to Net Zero, Glob. Cem. Concr. Assoc. (2021) 1–48.
Cembureau, Activity Report-2020, Brussels, 2021. https://doi.org/10.1007/BF02634808.
K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry, Cem. Concr. Res. 114 (2018) 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015.
P.J.M. MEHTA, P. K.; MONTEIRO, Concreto Microestrutura, Propriedade e Materiais, 2a edição, 2014.
G. Habert, S.A. Miller, V.M. John, J.L. Provis, A. Favier, A. Horvath, K.L. Scrivener, Environmental impacts and decarbonization strategies in the cement and concrete industries, Nat. Rev. Earth Environ. 1 (2020) 559–573. https://doi.org/10.1038/s43017-020-0093-3.
H.M. Hamada, B.A. Tayeh, A. Al-Attar, F.M. Yahaya, K. Muthusamy, A.M. Humada, The present state of the use of eggshell powder in concrete: A review, J. Build. Eng. 32 (2020) 101583. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101583.
WBCSD, IEA, Low Carbon Technology Roadmap for the Indian Cement Sector: Status Review 2018, (2018) 52. https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/Resources/Low-Carbon-Technology-Roadmap-for-the-Indian-Cement-Sector-Status-Review-2018.
SNIC e ABCP, Roadmap Tecnológico do Cimento, (2019).
Z. Cao, E. Masanet, A. Tiwari, S. Akolawala, Decarbonizing Concrete Deep decarbonization pathways for the cement and, Ind. Sustain. Anal. Lab. Northwest. Univ. (2021).
J. Skibsted, R. Snellings, Reactivity of supplementary cementitious materials (SCMs) in cement blends, Cem. Concr. Res. 124 (2019) 105799. https://doi.org/10.1016/j.cemconres.2019.105799.
I.Y. Hakeem, F. Althoey, A. Hosen, Mechanical and durability performance of ultra-high-performance concrete incorporating SCMs, Constr. Build. Mater. 359 (2022) 129430. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.129430.
M. Schneider, V. Hoenig, J. Ruppert, J. Rickert, The cement plant of tomorrow, Cem. Concr. Res. 173 (2023) 107290. https://doi.org/10.1016/j.cemconres.2023.107290.
R. Snellings, P. Suraneni, J. Skibsted, Future and emerging supplementary cementitious materials, Cem. Concr. Res. 171 (2023) 107199. https://doi.org/https://doi.org/10.1016/j.cemconres.2023.107199.
T.C.F. Oliveira, B.G.S. Dezen, E. Possan, Use of concrete fine fraction waste as a replacement of Portland cement, J. Clean. Prod. 273 (2020) 123126. https://doi.org/10.1016/j.jclepro.2020.123126.
D.R.B. Oliveira, M.P. Proença, J. Marques Filho, E. Possan, Mixed construction and demolition powder as a filler to Portland cement: study on packaged pastes, Ambient. Construído. 24 (2024). https://doi.org/10.1590/s1678-86212024000100715.
D. Ruth Bola Oliveira, G. Leite, E. Possan, J. Marques Filho, Concrete powder waste as a substitution for Portland cement for environment-friendly cement production, Constr. Build. Mater. 397 (2023) 132382. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2023.132382.
M.U. Hossain, Y. Dong, S.T. Ng, Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong, Case Stud. Constr. Mater. 15 (2021) e00659. https://doi.org/10.1016/j.cscm.2021.e00659.
S. Yousuf, L.F.M. Sanchez, S.A. Shammeh, The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry, J. Build. Eng. 25 (2019) 100815. https://doi.org/10.1016/j.jobe.2019.100815.
B.L. Damineli, F.M. Kemeid, P.S. Aguiar, V.M. John, Cement & Concrete Composites Measuring the eco-efficiency of cement use, Cem. Concr. Compos. 32 (2010) 555–562. https://doi.org/10.1016/j.cemconcomp.2010.07.009.
N.S. Klein, L.A. Lenz, W. Mazer, Influence of the granular skeleton packing density on the static elastic modulus of conventional concretes, Constr. Build. Mater. 242 (2020) 118086. https://doi.org/10.1016/j.conbuildmat.2020.118086.
D. Kantro, Influence of Water-Reducing Admixtures on Properties of Cement Paste—A Miniature Slump Test, Cem. Concr. Aggregates. 2 (1980) 95–102. https://doi.org/10.1520/cca10190j.
ABNT, NBR 16605: Cimento Portland e outros materiais em pó — Determinação da massa específica. Rio de Janeiro, 2017.
ABNT, NBR 5751: Materiais pozolânicos ― Determinação da atividade pozolânica com cal aos sete dias. Rio de Janeiro, 2015.
ABNT, NBR 5752: Materiais pozolânicos — Determinação do índice de desempenho com cimento Portland aos 28 dias. Rio de Janeiro, 2014.
ABNT, NBR 15895: Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fi xado – Método Chapelle modifi cado. Rio de Janeiro, 2010.
J.E. Funk, D.R. Dinger, Predictive Process Control of Crowded Particulate Suspensions, 1994. https://doi.org/10.1007/978-1-4615-3118-0.
R. Yu, P. Spiesz, H.J.H. Brouwers, Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res. 56 (2014) 29–39. https://doi.org/10.1016/j.cemconres.2013.11.002.
B.L. Damineli, Conceitos para formulação de concreto com baixo consumo de ligantes: controle reológico, empacotamento e dispersão de partículas, Universidade de São Paulo, 2013.
ABNT, NBR 5738: Concreto — Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro, 2015.
ABNT, NBR 16697: Cimento Portland - Requisitos. Rio de Janeiro, 2018.
AENOR, UNE 83988-2: durabilidad del hormigón. Métodos de ensayo: determinación de la resistividad eléctrica: parte 2: método de las cuatro puntas o de Wenner, (2014).
D.R.B. OLIVEIRA, Aproveitamento Da Fração Fina De Resíduo De Concreto Como Substituto Ao Cimento Portland, Tese de Doutorado - Universidade Federal do Paraná, 2022.
Y. Wu, C. Liu, H. Liu, H. Hu, C. He, L. Song, W. Huang, Pore structure and durability of green concrete containing recycled powder and recycled coarse aggregate, J. Build. Eng. 53 (2022) 1–6. https://doi.org/10.1016/j.jobe.2022.104584.
J. Hoppe Filho, C.A.O. Pires, O.D. Leite, M.R. Garcez, M.H.F. Medeiros, Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties, Constr. Build. Mater. 296 (2021) 123653. https://doi.org/10.1016/j.conbuildmat.2021.123653.
E. Navrátilová, P. Rovnaníková, Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars, Constr. Build. Mater. 120 (2016) 530–539. https://doi.org/10.1016/j.conbuildmat.2016.05.062.
S. Li, J. Gao, Q. Li, X. Zhao, Investigation of using recycled powder from the preparation of recycled aggregate as a supplementary cementitious material, Constr. Build. Mater. 267 (2021) 120976. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.120976.
F. Brekailo, E. Pereira, E. Pereira, M.M. Farias, R.A. Medeiros-Junior, Red ceramic and concrete waste as replacement of portland cement: Microstructure aspect of eco-mortar in external sulfate attack, Clean. Mater. 3 (2022) 100034. https://doi.org/10.1016/J.CLEMA.2021.100034.
ABNT, NBR 12653: Materiais pozolânicos — Requisitos. Rio de Janeiro, 2014.
F. Brekailo, E. Pereira, E. Pereira, J.H. Filho, M.H.F. De Medeiros, Evaluation of the reactive potential of additions of red ceramic waste and comminuted concrete of CDW in cement matrix, Ceramica. 65 (2019) 351–358. https://doi.org/10.1590/0366-69132019653752552.
Z. Ge, Z. Gao, R. Sun, L. Zheng, Mix design of concrete with recycled clay-brick-powder using the orthogonal design method, Constr. Build. Mater. 31 (2012) 289–293. https://doi.org/10.1016/j.conbuildmat.2012.01.002.
J. Xiao, Z. Ma, T. Sui, A. Akbarnezhad, Z. Duan, Mechanical properties of concrete mixed with recycled powder produced from construction and demolition waste, J. Clean. Prod. 188 (2018) 720–731. https://doi.org/10.1016/j.jclepro.2018.03.277.
Z. Ma, M. Liu, Z. Duan, C. Liang, H. Wu, Effects of active waste powder obtained from C&D waste on the microproperties and water permeability of concrete, J. Clean. Prod. 257 (2020) 120518. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120518.
Y. Kim, Quality properties of self-consolidating concrete mixed with waste concrete powder, Constr. Build. Mater. 135 (2017) 177–185. https://doi.org/10.1016/j.conbuildmat.2016.12.174.
H.W. Song, V. Saraswathy, Corrosion monitoring of reinforced concrete structures - A review, Int. J. Electrochem. Sci. 2 (2007) 1–28. https://doi.org/10.1016/s1452-3981(23)17049-0.
P. Azarsa, R. Gupta, Electrical Resistivity of Concrete for Durability Evaluation: A Review, Adv. Mater. Sci. Eng. 2017 (2017). https://doi.org/10.1155/2017/8453095.
R.T. Rios, F. Lolli, L. Xie, Y. Xie, K.E. Kurtis, Screening candidate supplementary cementitious materials under standard and accelerated curing through time-series surface resistivity measurements and change-point detection, Cem. Concr. Res. 148 (2021) 6–11. https://doi.org/10.1016/j.cemconres.2021.106538.
B. Cantero, M. Bravo, J. de Brito, I.F. Sáez del Bosque, C. Medina, Mechanical behaviour of structural concrete with ground recycled concrete cement and mixed recycled aggregate, J. Clean. Prod. 275 (2020). https://doi.org/10.1016/j.jclepro.2020.122913.
L. Likes, A. Markandeya, M.M. Haider, D. Bollinger, J.S. McCloy, S. Nassiri, Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete, J. Clean. Prod. 364 (2022) 132651. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.132651.