ANÁLISE DO IMPACTO DE MATERIAIS DE MUDANÇA DE FASE NO CONFORTO TÉRMICO DE ESCOLA PÚBLICA ATRAVÉS DE SIMULAÇÃO COMPUTACIONAL
DOI:
https://doi.org/10.46421/entac.v18i.890Keywords:
PCM, EnergyPlus, Thermal Comfort, Bioclimatic ZoningAbstract
The Federal Government’ Program Proinfância is based on the construction of a standardized design with a country-wide distribution. It is applied in all the eight different bioclimatic zones described by the ABNT NBR 15220-3 (ABNT, 2005). Standardized designs can overlook some aspects concerning the local climate, harming the building’s thermal performance, and reducing thermal comfort levels. When applied in buildings, Phase Change Materials (PCMs) show potential to increase thermal comfort in a passive way. This paper has the objective to evaluate the impact of the application of different types of PCMs within a standardized design of a public preschool from the Proinfância program, located in the bioclimatic zone 3. Computational simulations considering the hysteresis of the material were performed using the software EnergyPlus, and their results were analyzed according to the Adaptative Method from ASHRAE 55. Reductions of days in thermal discomfort conditions were perceived during the reference year, besides, the improvement of the average hourly operative temperature during summer and winter design days, thus, showing the capacity from the PCMs to increase the thermal comfort levels and, potentially, decrease energy consumption when air conditioning the building.
References
AKEIBER, Hussein et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable And Sustainable Energy Reviews, [s.l.], v. 60, p.1470-1497, jul. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.rser.2016.03.036.
AL-JANABI, Ali; KAVGIC, Miroslava. Application and sensitivity analysis of the phase change material hysteresis method in EnergyPlus: A case study. Applied Thermal Engineering, [s.l.], v.
162, p.1-19, nov. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.applthermaleng.2019.114222.
AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR CONDITIONING ENGINEERS -ASHRAE. ANSI/ASHRAE 55: Thermal environmental conditions for human occupancy. Atlanta, 2013.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. NBR 15220-2: Desempenho Térmico de Edificações – Parte 2: Métodos de cálculo da transmitância térmica, da capacidade térmica, do atraso térmico e do fator solar de elementos e componentes de edificações. Rio de Janeiro: ABNT, 2005b.
_____. NBR 15220-3: Desempenho Térmico de Edificações - Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social. Rio de Janeiro: ABNT, 2005c.
BRASIL. Ministério da Educação. Memorial Descritivo. Projeto Proinfância Tipo 2. Fundo Nacional de Desenvolvimento da Educação – FNDE. Brasília, 2013. Disponível em: <http://www.fnde.gov.br/programas/proinfancia/areas-para-gestores/manuais>. Acesso em: 28/02/2020.
CUI, Yaping et al. A review on phase change material application in building. Advances In Mechanical Engineering, [s.l.], v. 9, n. 6, p.1-15, jun. 2017. SAGE Publications. http://dx.doi.org/10.1177/1687814017700828.
MAGENDRAN, Suhanyaa S. et al. Synthesis of organic phase change materials (PCM) for energy storage applications: A review. Nano-structures & Nano-objects, [s.l.], v. 20, p.1-18, out. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.nanoso.2019.100399.
PAROUTOGLOU, Evdoxia et al. A PCM based cooling system for office buildings: a state of the art review. E3s Web Of Conferences, [s.l.], v. 111, p.1-8, 2019. EDP Sciences. http://dx.doi.org/10.1051/e3sconf/201911101026.
PCMPRODUCTS. PlusICE Hydrated Salt (S) Range. 2018. Disponível em: http://www.pcmproducts.net/files/S%20range-2018.pdf. Acesso em: 16 mar. 2020.
PONS, VinÍcius. ESTUDO DO POTENCIAL DOS MATERIAIS COM MUDANÇA DE FASE PARA REDUÇÃO DO CONSUMO DE ENERGIA NA MANUTENÇÃO DO CONFORTO TÉRMICO NO AMBIENTE CONSTRUÍDO. 2017. 112 f. Tese (Doutorado) - Curso de Engenharia Civil, Setor de Tecnologia, Programa de Pós-graduação em Engenharia de Construção Civil, Universidade Federal do Paraná, Curitiba, 2017.
PURETEMP. PURETEMP 23 TECHNICAL DATA SHEET. 2014. Disponível em: https://www.puretemp.com/stories/puretemp-23-tds. Acesso em: 15 mar. 2020.
RUBITHERM. Data sheet. 2020. Disponível em: https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT25HC_EN_15012020.PDF. Acesso em: 15 mar. 2020.
SARTORI, Gabriela. AVALIAÇÃO DO IMPACTO DA ORIENTAÇÃO SOLAR NO CONFORTO E DESEMPENHO TÉRMICO DE PROJETO PADRÃO DE PRÉ-ESCOLA DO PROGRAMA PROINFÂNCIA NAS ZONAS BIOCLIMÁTICAS BRASILEIRAS. 2019. Dissertação (Mestrado em Engenharia) -Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura, Escola de Engenharia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2019.
TABARES-VELASCO, Paulo Cesar; CHRISTENSEN, Craig; BIANCHI, Marcus. Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building And Environment, [s.l.], v. 54, p. 186-196, ago. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.buildenv.2012.02.019.
VEERAKUMAR, C.; SREEKUMAR, A.. Phase change material based cold thermal energy storage: Materials, techniques and applications – A review. International Journal Of Refrigeration, [s.l.], v. 67, p.271-289, jul. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.ijrefrig.2015.12.005.
WEINLÄDER, Helmut; BECK, Andreas; FRICKE, Jochen. PCM-facade-panel for daylighting and room heating. Solar Energy, [s.l.], v. 78, n. 2, p. 177-186, fev. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.solener.2004.04.013.