Bank branch water consumption analysis using control charts: a case study in Joinville

Authors

DOI:

https://doi.org/10.46421/sispred.v3.2957

Keywords:

Control charts, Water consumption, Sustainability, Public buildings, Statistical monitoring

Abstract

ABSTRACT: Remotely monitoring water consumption in buildings, by daily and hourly intervals, is presented as a possible fast and reliable method for implementing procedures to reduce the amount of wasted water. The objective of this study was to analyse the performance of two distinct statistical control charts when used to monitor the water consumption in a bank agency located in the city of Joinville, Brazil. The control charts were used in order to identify special events that occurred during the data gathering period, ranging from 10/31/2018 to 11/03/2019. The statistical control charts selected for this study were the Shewhart and EWMA charts. The average daily water consumption found was 4.51 m³/day. Both types of charts presented satisfactory results in detecting leakages and excessive water consumption, as well as the detection of unusual events that occurred during the analysed period. Complementarily, the EWMA chart performed better in the detection of small water volume shifts.

Downloads

Download data is not yet available.

Author Biographies

Lucas Lepinski Golin Freitas, Universidade do Estado de Santa Catarina (UDESC)

Bacharel em Engenharia Civil pela Universidade do Estado de Santa Catarina, Joinville – Santa Catarina

Andreza Kalbusch, Universidade do Estado de Santa Catarina (UDESC)

Doutora em Engenharia Civil, Departamento de Engenharia Civil, Universidade do Estado de Santa Catarina (UDESC), Joinville, Brasil.

Elisa Henning, Universidade do Estado de Santa Catarina (UDESC)

Doutora em Engenharia de Produção, Departamento de Matemática, Universidade do Estado de Santa Catarina (UDESC), Joinville-SC, Brasil.

Marcio Ferreira de Lima

Engenheiro de Produção. Mestre em Meio Ambiente Urbano e Industrial (Engenharia Química - UFPR) - Caixa Econômica Federal

References

BRITTON, T.; COLE, G.; STEWART, R.; WISKAR, D. Remote Diagnosis of leakage in residential households. Water, Australia, v. 35, n. 6, p. 56-60, 2009.

CLARO, F. A. E.; COSTA, A. F. B.; MACHADO, M. A. G. Gráficos de controle de EWMA e de Xbar para monitoramento de processos autocorrelacionados. Produção, v. 17, n. 3, p. 536-546, 2007.

COMINOLA, A.; GIULIANI, M.; PIGA, D.; CASTELLETTI, A.; RIZZOLI, A. E. Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review,Environmental Modelling & Software, v. 72, p. 198-214, 2015.

COSGROVE, W. J.; LOUCKS, D. P. Water management: Current and future challenges and research directions, Water Resour. Res., v. 51, p. 4823– 4839, 2015.

FREITAS, L. L. G.; HENNING, E.; KALBUSCH, A.; KONRATH, A. C.; WALTER, O. F. C. Analysis of water consumption in toilets employing Shewhart, EWMA, and Shewhart-EWMA combined control charts. J. Clean. Prod., Brasil, v. 233, p. 1146-1157, 2019.

KIM, Y.; SCHMID, T.; CHARBIWALA, Z. M.; FRIEDMAN, J.; SRIVASTAVA, M. B.; NAWMS: Nonintrusive autonomous water monitoring system. In: 6 ed. ASSOCIATION FOR COMPUTING MACHINERY - ACM CONFERENCE ON EMBEDDED NETWORK SENSOR SYSTEMS, 2008, Nova York. Anais Eletrônicos.

MONTGOMERY, Douglas C.; RUNGER, George C. Applied Statistics and Probability for Engineers. 3. ed. Estados Unidos da América: John Wiley & Sons. 2003.

MONTGOMERY, D. C. (2012). Introduction to Statistical Quality Control. 7. ed. Estados Unidos da América: John Wiley & Sons. 2012.

QIU, P. Introduction to statistical process control. Estados Unidos da America, Universidade da Florida: Chapman and Hall/CRC. 2014. Disponível em: https://www.routledge.com/Introduction-to-Statistical-Process-Control/Qiu/p/book/9781439847992. Acesso em: 10 dez. 2020.

R CORE TEAM. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2018. Disponível em: https://cran.r-project.org/bin/windows/. Acesso em 01. abr. 2021.

ROBERTS, S.W. Control Charts Tests Based on Geometric Moving Averages. Technometrics, Reino Unido, v. 42, p. 97-101, 2000. Disponível em: https://www.jstor.org/stable/1271439?seq=1#metadata_info_tab_contents. Acesso em: 19 mai. 2019.

SCRUCCA, L. qcc: An R package for quality control charting and statistical process control. R News 4/1, 11-17. 2004.

SHAMSUZZAMAN, M.; KHOO, M. B. C.; HARIDY, S.; ALSYOUF, I. An optimization design of the combined Shewhart-EWMA control chart. The International Journal of Advanced Manufacturing Technology, Londres, v. 86, p. 1627-1637, 2016.

VASCONCELLOS, Bruna T. C.; FILHO, Geraldo L. T.; BONATTO, Benedito D.; DE SOUZA JUNIOR, Oswaldo H. Applying an Exponentially Weighted Moving Average control chart using flow history and assured energy levels to small hydroelectric power plants, Brazilian Journal of Water Resources, Brasil, v. 25, 2020. https://doi.org/10.1590/2318-0331.252020190159.

WAN, Xi; FARMANI, Raziyeh; KEEDWELL, Edward. Online leakage detection system based on EWMA-enhanced - Tukey method for water distribution systems, Hydroinformatics, Reino Unido, v. 25, n. 1, p. 51-69, 2022. https://doi.org/10.1590/2318-0331.252020190159.

Published

2023-10-14

How to Cite

LEPINSKI GOLIN FREITAS, Lucas; KALBUSCH, Andreza; HENNING, Elisa; FERREIRA DE LIMA, Marcio. Bank branch water consumption analysis using control charts: a case study in Joinville . In: SIMPÓSIO NACIONAL DE SISTEMAS PREDIAIS, 3., 2023. Anais [...]. Porto Alegre: ANTAC, 2023. p. 82–90. DOI: 10.46421/sispred.v3.2957. Disponível em: https://eventos.antac.org.br/index.php/sispred/article/view/2957. Acesso em: 3 dec. 2024.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.