Analysis of the behavior of masonry prisms made with modular soil-cement-CDW bricks

Authors

DOI:

https://doi.org/10.46421/enarc.v8i00.2930

Keywords:

Mechanical behaviour of masonry, Construction waste, Masonry with soil-cement brick, Soil-cement bricks and CDW, Soil-cement prisms

Abstract

In this research, the compressive strength and modulus of elasticity of prisms made with hollow soil-CDW-cement bricks (50%-10%-50%, by mass), aged (530 days), joined by a 5 mm conventional laying mortar joint. The characterization of the soil and the mixture of Soil-Cement-CDW was carried out. Compressive strength, modulus of elasticity and failure mode of the prisms were evaluated. The efficiency factor of the prisms was 57%, an expected value consistent with other authors. The failure mode observed was traction in the bricks and subsequent propagation of cracks in the joints, presenting behavior similar to brittle rupture materials. The equations proposed by the Brazilian normalization for concrete bricks were the ones that were closest to the values found in this research. It should be noted, however, that the mechanical behavior of this type of masonry still needs to be better studied.

Author Biographies

White Santos, Universidade Federal de Minas de Gerais

Professor no Departamento de Engenharia de Materiais e Construção Civil (UFMG-2012), Doutorado em Engenharia Civil (UFV - 2014).

Nelci Gutierrez, Universidade Estadual de Maringá

Doutorado em Geotecnia pela Universidade de São Paulo (2005). Atualmente é Professora Titular da Universidade Estadual de Maringá. 

References

ABHILASH, H. N. et al. Compressive Strength of Novel Alkali-Activated Stabilized Earth Materials Incorporating Solid Wastes. Journal of Materials in Civil Engineering, v. 32, jun. 2020. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003188.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 10837: Cálculo de alvenaria estrutural de blocos vazados de concreto. Rio de Janeiro, 1989.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 12023: Solo-cimento – Ensaio de Compactação. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 13279: Argamassa para assentamento e revestimento de paredes e tetos - Determinação da resistência à tração na flexão e à compressão. Rio de Janeiro, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15812-2: Alvenaria estrutural – Blocos cerâmicos. Parte 1: Projetos. Rio de Janeiro, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15961-1: Alvenaria estrutural – Blocos de concreto. Parte 1: Projeto. Rio de Janeiro, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15961-2: Alvenaria estrutural – Blocos de concreto. Parte 2: Execução e controle de obras. Rio de Janeiro, 2011.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16697: Cimento Portland - Requisitos. Rio de Janeiro, 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16868-1: Alvenaria estrutural. Parte 1: Projeto. Rio de Janeiro, 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6457: Preparação de amostras de solo para ensaios de caracterização e de compactação. Rio de Janeiro, 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6459: Determinação do limite de liquidez. Rio de Janeiro, 1984.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6502: Rochas e solos. Rio de Janeiro, 1995.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6508: Grãos de solos que passam na peneira de 4,8 mm - Determinação da massa específica. Rio de Janeiro, 1984.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7175: Cal hidratada para argamassas – Requisitos. Rio de Janeiro, 2003.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7180: Determinação do limite de plasticidade. Rio de Janeiro, 1988.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7181: Solo - Análise granulométrica. Rio de Janeiro, 1984.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7182: Solo – Ensaio de compactação – Método de ensaio. Rio de Janeiro, 1988.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7211: Agregados para concreto – Especificação. Rio de Janeiro, 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR NM 52: Agregado miúdo - Determinação da massa específica e massa específica aparente. Rio de Janeiro, 2009.

BARROS, M. M. et al. Ecological bricks from dimension stone waste and polyester resin. Construction and Building Materials. v. 232, n 117252, 30 jan. 2020. 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117252.

BRITISH STANDARD INSTITUITION. EN 1052-1:1999. Methods of Test for Masonry – Part 1: Determination of Compressive Strength. 1999.

BRITISH STANDARD INSTITUITION. EN 1996-1-1. Eurocode 6 – Design of masonry structures – Part 1-1: General rules for reinforced and unreinforced masonry structures. English Version, 2005.

BRITISH STANDARD INSTITUITION. EN 1996-1-1. Eurocode 6 – Design of masonry structures – Part 1-1: General rules for reinforced and unreinforced masonry structures. English Version, 2005.

CALDEIRA, F. E. Influence of joint thickness and strength of mortars on the compressive behavior of prisms made of normal and high-strength concrete blocks. Construction and Building Materials, v. 234, 20 feb. 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117419.

CALDERÓN, S. A detailed experimental mechanical characterization of multi-perforated clay brick masonry. Journal of Building Engineering, v. 63, n 105505, 1 jan. 2023. DOI: https://doi.org/10.1016/j.jobe.2022.105505.

CANADIAN STANDARDS ASSOCIATION. S304-14: Design Masonry Structures. Ontario, 2014.

DHANJODE, C. NAG, A. Utilization of landfill waste in brick manufacturing: A review. Materialstoday: Proceedings. v. 62, p 6628 – 6633. 6 maio 2022. DOI: https://doi.org/10.1016/j.matpr.2022.04.616.

HANY, E. et al. Investigating the mechanical and thermal properties of compressed earth bricks made by eco-friendly stabilization materials as partial or full replacement of cement. Construction and Building Materials. v. 281, n 122535, 26 abril 2021. Elsevier Ltd. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122535.

KONGKAJUN, N. et al. Case Studies in Construction Materials. Soil – cement bricks produced from local clay brick waste and soft sludge from fiber cement production. Case Studies in Construction Materials. v. 13, e00448, dez. 2020. Elsevier Ltd. DOI: https://doi.org/10.1016/j.cscm.2020.e00448.

LUMANTARNA, R., BIGGS, D. T., INGHAM J. Uniaxial compressive strength and stiffness of field-extracted and laboratory constructed masonry prisms. Journal of Materials in Civil Engineering, v. 26, abril 2014, p. 567-575. DOI: 10.1061/(ASCE)MT.1943-5533.0000731.

MALKANTHI, S. N., WICKRAMASINGLE, W. G. S., PEREIRA, A. A. D. A. J. Use of construction waste to modify soil grading for compressed stabilized earth blocks (CSEB) production. Case Studies in Construction Materials, v. 15, dec 2021. DOI: https://doi.org/10.1016/j.cscm.2021.e00717.

MOHAMAD, G. et al. Strength, behavior, and failure mode of hollow concrete masonry constructed with mortars of different strengths. Construction and Building Materials, v. 134, 1 março 2017, p. 489-496. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.112.

MOREL, J. C. et al. Some observations about the paper “Earth construction: Lessons from past for future eco-efficient construction”. Construction and Building Materials, v. 44, jul. 2013, p. 419-421. DOI: https://doi.org/10.1016/j.conbuildmat.2013.02.054.

MUÑOZ, P. et al. Adobe bricks reinforced with paper & pulp wastes improving thermal and mechanical properties. Construction and Building Materials. v. 254, n 119314, 10 set. 2020. Elsevier Ltd. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119314.

NADIA, B. FATMA, K. NASSER, C. Mechanical, thermal and durability investigation of compressed earth bricks stabilized with wood biomass ash. Construction and Building Materials. v. 364, n 129874, 18 jan. 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129874.

NALON, et al. Strength and failure mechanisms of masonry prisms under compression, flexure and shear: components’ mechanical properties as design constraints. Journal of Building Engineering, v. 28, n 101038, março 2020DOI: https://doi.org/10.1016/j.jobe.2019.101038.

NASCIMENTO, E. S. S., et al. Soil-cement brick with granite cutting residue reuse. Journal of Cleaner Production, v. 321, 25 oct. 2021. 2023. DOI: https://doi.org/10.1016/j.jclepro.2021.129002.

PARSEKIAN, G. A., HAMID, A. A., DRYSDALE, R. G. Comportamento e dimensionamento de alvenaria estrutural. 2ª ed. São Carlos: EdUFSCar, 2013.

REDDY, B. V. V., GUPTA, A. Influence of sand grading on the characteristics of mortars and soil-cement block masonry. Construction and Building Materials, v. 22, aug. 2008, p. 1614-1623. DOI: https://doi.org/10.1016/j.conbuildmat.2007.06.014.

SECO, A. et al. Sustainable unfired bricks manufacturing from construction and demolition wastes. Construction and Building Materials. v. 167, 10 abril 2018, p. 154-165. 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.026.

VILELA, M. M. et al. Ecological bricks from dimension stone waste and polyester resin. Construction and Building Materials. v. 232, n 117252, 30 jan. 2020. Elsevier Ltd. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117252.

ZANATTA, K. C. Análise do comportamento de prismas de alvenaria de tijolos de solo-cimento-RCC. Dissertação (mestrado em Engenharia Civil). Universidade Estadual de Maringá. Maringá, 2015. 116p.

Published

2023-10-25

How to Cite

Valim, F., Santos, W., Gutierrez, N., Silva, L. M. e ., & Zanatta, K. C. (2023). Analysis of the behavior of masonry prisms made with modular soil-cement-CDW bricks. ENCONTRO NACIONAL DE APROVEITAMENTO DE RESÍDUOS NA CONSTRUÇÃO, 8(00), 1–8. https://doi.org/10.46421/enarc.v8i00.2930

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.