Inferências para a ventilação cruzada em ambientes internos a partir da simulação aerodinâmica

Autores

DOI:

https://doi.org/10.46421/encac.v17i1.4621

Palavras-chave:

Ventilação natural, Ventilação interna, CFD, Arquitetura baseada em simulação

Resumo

 

Nos últimos anos, o processo projetual na arquitetura experimentou incrementos significativos decorrentes do projeto computacional, o que permitiu a exploração de alternativas de projeto em tempo real com base na modelagem paramétrica. No projeto do edifício, o entendimento da maioria dos sistemas de medição do contexto da ventilação natural pode direcionar a tomada de decisão a partir das simulações computacionais. Este trabalho apresenta um esforço para determinar o padrão de fluxo da ventilação natural em ambientes internos sob condições específicas, a partir da simulação aerodinâmica no Ansys Fluent® R22 composto por cinco configurações analisadas comparativamente a uma amostra controle. Respeitando as reduções científicas e utilizando diversas soluções de aferição consolidadas na Engenharia Aeronáutica, objetiva-se analisar o padrão do fluxo aerodinâmico em ambientes internos fundamentado a partir do registro de inferências significativas. Verificou-se que o posicionamento diagonal das aberturas acelera substancialmente a velocidade do vento em ambientes internos, fazendo com que essa estratégia de projeto se sobreponha à proposição de mais aberturas quando a intenção é aumentar a velocidade e a renovação do ar interno.

Biografia do Autor

André Araujo, Universidade Federal de Uberlândia

Arquiteto e Urbanista, Mestre em Engenharia Civil e Doutor em Arquitetura e Urbanismo pela Unicamp com período sanduíche no Instituto de Tecnologia de Melbourne, Austrália. Desde de 2017 é professor e pesquisador da Faculdade de Arquitetura, Urbanismo e Design da Universidade Federal de Uberlândia, onde fundou e coordena o Laboratório de Modelagem Baseada em Informação (www.informa3d.xyz) dedicado a desenvolver ciência e tecnologia nas áreas de Building Information Modeling e Simulação Computacional

Referências

ABBAS, G.; DINO, İ. A parametric design method for CFD-supported wind-driven ventilation. IOP Conference Series: Materials Science and Engineering, Reino Unido, v. 609, p. 1-7, 2019. DOI: 10.1088/1757-899X/609/3/032010

ASHRAE – AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS ANSI/ASHRAE Standard 62.1-2019. Ventilation for Acceptable Indoor Air Quality (2019).

BLOCKEN, B.; CARMELIET, J. CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, v. 95, p. 941-962, 2007. DOI: 10.1016/j.jweia.2007.01.013

BOVO, M.; SANTOLINI, E.; BARBARESI, A.; P. TASSINARI, P.; TORREGGIANI, D. Assessment of geometrical and seasonal effects on the natural ventilation of a pig barn using CFD simulations. Computers and Electronics in Agriculture, v. 193, p. 1-17, 2022. DOI: 10.1016/j.compag.2021.106652

CERMAK, J. E.; POREH, M.; PETERKA, J. A.; AYAD, S. S. Wind tunnel investigations of natural ventilation, Journal of Transportation Engineering, v. 110, p. 67–79, 1984.

CIBSE – Chartered Institution of Building Services Engineers. Natural ventilation in non-domestic buildings, Londres, 2005. ISBN: 1 903287 56 1

CUCE, E.; SHER, F.; SADIQ, H.; CUCE, P.; BESIR, A. Sustainable ventilation strategies in buildings: CFD research, Sustainable Energy Technologies and Assessments. Vol. 36, p. 1-10, 2019. DOI: 10.1016/j.seta.2019.100540

CUI, P.; CHEN, W.; WANG, J.; ZHANG, J.; HUANG, Y.; TAO, W. Numerical studies on issues of Re-independence for indoor airflow and pollutant dispersion within an isolated building. Building Simulation, v. 15, p. 1259-1276, 2022. DOI: 10.1007/s12273-021-0846-z

D’ALICANDRO, A.; MAURO, A. Effects of operating room layout and ventilation system on ultrafine particle transport and deposition. Atmospheric Environment, v. 270, p. 1-15, 2022. DOI: 10.1016/j.atmosenv.2021.118901

DAO, H.; KIM, K. Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations. Building and Environment, v. 209, p. 1-11, 2022. DOI: 10.1016/j.buildenv.2021.108649

DONN, M. R.; BAKSHI, N. A natural ventilation “calculator”: The challenge of defining a representative ‘performance sketch’ in practice and research. Materials Science and Engineering, v. 609, p. 1-7, 2019. DOI:10.1088/1757-899X/609/7/072045

ELSHAFEI, G.; NEGM, A.; BADY, M.; SUZUKI, M.; IBRAHIM, M. Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy and Buildings, v. 141, p. 321-332, 2017. DOI:10.1016/j.enbuild.2017.02.055

ELWAN, M.; DEWAIR, H. Lattice windows as a natural ventilation strategy in hot, humid regions. Simulation for a Sustainable Built Environment, v. 397, p, 1-15, 2019. DOI: 10.1088/1755-1315/397/1/012022

FU, X.; HAN, M. Analysis of Natural Ventilation Performance Gap between Design Stage and Actual Operation of Office Buildings. Web of Conferences, v. 172, p. 1-6, 2020. DOI: 10.1051/e3sconf/20201720 0 9 10

GIVONI, B. Basic Study of Ventilation Problems in Housing in Hot Countries. Haifa: Building Research Station, Technion, Israel Institute of Technology, 1962

GIVONI, B. Climate Considerations in Building and Urban Design. Londres: John Wiley & Sons, 1998. ISBN: 978-0-471-29177-0

HAWENDI, S.; GAO, S. Impact of an external boundary wall on indoor flow field and natural cross-ventilation in an isolated family house using numerical simulations. Journal of Building Engineering, v.10, p. 109-123, 2017. DOI: 10.1016/j.jobe.2017.03.002

IRWIN, P.; DENOON, R.; SCOTT, D. Wind Tunnel Testing of High-Rise Buildings. Londres, 2013. ISBN: 9780415714594

IZADYAR, N.; MILLER, W.; RISMANCHI, B.; GARCIA-HANSEN, V. Numerical simulation of single-sided natural ventilation: Impacts of balconies opening and depth scale on indoor environment, IOP Conference Series: Earth and Environmental Science, Reino Unido, v. 463, p. 1-6, 2020. DOI: 10.1088/1755-1315/463/1/012037

KABOŠOVÁ, L. Analysis of wind-adaptive architecture. IOP Conference Series: Materials Science and Engineering, Reino Unido, v. 867, p. 1-8, 2020. DOI: 10.1088/1757-899X/867/1/012014

KHOSROWJERDI, S.; SARKARDEH, H.; KIOURMARSI, M. Effect of wind load on different heritage dome buildings. European Physical Journal Plus, v. 136 p. 1-18, 2021. DOI: 10.1140/epjp/s13360-021-02133-0

KONG, X; CHANG, N.; LI, H.; LI, W. Comparison study of thermal comfort and energy saving under eight different ventilation modes for space heating. Building Simulation, v. 15, p. 1323-1337, 2022. DOI: 10.1007/s12273-021-0814-7

KÜÇÜKTOPCU, E.; CEMEK, B.; SIMSEK, H.; NI, J. Computational Fluid Dynamics modeling of a broiler house microclimate in summer and winter. Animals, v. 12, p .1-16, 2022. DOI: 10.3390/ani12070867

KUMAR, N.; BARDHAN, R.; KUBOTA, T.; TOMINAGA, Y.; SHIRZADI, M. Parametric study on vertical void configurations for improving ventilation performance in the mid-rise apartment building. Building and Environment, v. 215, p. 1-16, 2022. DOI: 10.1016/j.buildenv.2022.108969

KWOK, H.; CHENG, J.; LI, A.; LAU, A. Impact of shaft design to thermal comfort and indoor air quality of floors using BIM technology. Journal of Building Engineering, v. 51, p. 1-19, 2022. DOI: 10.1016/j.jobe.2022.104326

KWOK, H.; CHENG, J.; LI, A.; TONG, J.; LAU, A. Multi-zone indoor CFD under limited information: An approach coupling solar analysis and BIM for improved accuracy. Journal of Cleaner Production, v. 244, p. 1-14, 2020. DOI: 10.1016/j.jclepro.2019.118912

LAURINI, E.; VITA, M.; BERARDINIS, P.; FRIEDMAN, A. Passive Ventilation for Indoor Comfort: a comparison of results from monitoring and simulation for a historical building in a temperate climate. Sustainability, v. 10, p. 1-20, 2018. DOI: 10.3390/su10051565

LEZCANO, R; BURGOS, M. Airflow analysis of the Haida plank house, a breathing envelope. Energies, v. 14, p. 1-14, 2021. DOI:10.3390/en14164871

LI, W.; SUBIANTORO, A.; MCCLEW, I.; SHARMA, R. CFD simulation of wind and thermal-induced ventilation flow of a roof cavity. Building Simulation, v. 15, p. 1611-1627, 2022. DOI: 10.1007/s12273-021-0880-x

LUKIANTCHUKI, M. A.; SHIMOMURA, A. P.; SILVA, F. M.; CARAM, R. M. Wind tunnel and CFD analysis of wind-induced natural ventilation in sheds roof building: impact of alignment and distance between sheds. International Journal of Ventilation, v. 19, p. 141-162, 2020. DOI: 10.1080/14733315.2019.1615219

MANUAL, U. D. F. ANSYS FLUENT 22.0. Theory Guide, Ansys INC, Pensilvânia, 2022.

MEI, X.; ZENG, C.; GONG G. Predicting indoor particle dispersion under dynamic ventilation modes with high-order Markov chain model. Building Simulation, v. 15, p. 1243-1258, 2022. DOI: 10.1007/s12273-021-0855-y

NASROLLAHI, N.; GHOBADI, P. Field measurement and numerical investigation of natural cross-ventilation in high-rise buildings; Thermal comfort analysis. Applied Thermal Engineering, v. 211, p. 1-25, 2022. DOI: 10.1016/j.applthermaleng.2022.118500

OBEIDAT, B.; KAMAL, H.; ALMALKAWI, A. CFD Analysis of an Innovative Wind Tower Design with Wind-Inducing Natural Ventilation Technique for Arid Climatic Conditions. Journal of Ecological Engineering, v. 22, p. 86-97, 2021. DOI: 10.12911/22998993/130894

OLGYAY, V.; Olgyay, A. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton: University Press, Nova Jersey, 1963. ISBN: 9780691169736

OUYANG, K.; HAGHIGHAT, F. A procedure for calculating thermal response factors of multi-layered walls-state space method. Building and Environment, v. 26 (2), p. 173–177, 1991. DOI: 10.1016/0360-1323(91)90024-6

PHILLIPS, D. A.; SOLIGO, M. J. Will CFD ever replace wind tunnels for building wind simulations? International Journal of High-Rise Buildings, v. 8 n. 2, p. 107-116, 2019. DOI: 10.21022/IJHRB.2019.8.2.107

SAKIYAMA, N. R. M.; FRICK, J.; BEJAT, T; GARRECHT, H. Using CFD to Evaluate Natural Ventilation through a 3D Parametric Modeling Approach. Energies, v.14, p. 1-27, 2021. DOI: 10.3390/en14082197

SAKIYAMA, N.R.M.; CARLO, J. C.; FRICK, J.; GARRECHT, H. Perspectives of naturally ventilated buildings: a review. Renewable and Sustainable Energy Reviews, v. 130, p. 1-18, 2020. DOI: 10.1016/j.rser.2020.109933

SUBHASINI, S.; THIRUMARAN, K. CFD simulations for examining natural ventilation in the learning spaces of an educational building with courtyards in Madurai. Building Services Engineering Research and Technology, v. 41, p. 466 – 479, 2019. DOI: 10.1177/0143624419878798

TAN, L.; YUAN, Y. Computational fluid dynamics simulation and performance optimization of an electrical vehicle Air-conditioning system. Alexandria Engineering Journal, Alexandria, v. 61, p. 315-328, 2022. DOI: 10.1016/j.aej.2021.05.001

WEERASURIYAA, U.; ZHANGA, GANA, V.; TAN, Y. A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings. Building and Environment, v. 153 p 218 – 232, 2019. DOI: 10.1016/j.buildenv.2019.02.027

ZHANG, T.; ZHANG, Y.; GAO, A.; RAO, Y.; ZHAO, Q. Study on the kinetic characteristics of indoor air pollutants removal by ventilation. Building and Environment, v. 207, p. 1-8, 2022. DOI: 10.1016/j.buildenv.2021.108535

ZHANG, X.; WEERASURIYA, A. U.; WANG, J.; LI, C. Y.; CHEN, Z.; TSE, K. T. Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment, v. 207, p. 1-18, 2022b. DOI: 10.1016/j.buildenv.2021.108447

ZHANG, Y.; KACIRA, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosystems Engineering, v. 220, p.73-86, 2022. DOI: 10.1016/j.biosystemseng.2022.05.009

ZHANG, Z.; YIN, W.; WANG, T.; O’DONOVAN, A. Effect of cross-ventilation channel in classrooms with interior corridor estimated by computational fluid dynamics. Indoor and Built Environment, v. 31, p. 1047-1065, 2022a. DOI: 10.1177/1420326X211054341

ZHENG, X.; SHI, Z.; XUAN, Z.; QIAN, H. Natural Ventilation, Handbook of Energy Systems in Green Buildings. p. 1227-1270, 2018.

Downloads

Publicado

2023-10-26

Como Citar

BITTAR, Mariana; ARAUJO , André; ALMEIDA, Odenir; MARTINS, Themis; SOUSA, Maurício. Inferências para a ventilação cruzada em ambientes internos a partir da simulação aerodinâmica . In: ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO, 17., 2023. Anais [...]. [S. l.], 2023. p. 1–10. DOI: 10.46421/encac.v17i1.4621. Disponível em: https://eventos.antac.org.br/index.php/encac/article/view/4621. Acesso em: 2 jul. 2024.

Edição

Seção

4. Desempenho Térmico do Ambiente Construído