Inferences for cross ventilation in indoor environments from aerodynamic simulation
DOI:
https://doi.org/10.46421/encac.v17i1.4621Keywords:
Natural ventilation, Indoor ventilation, CFD, Simulation-Based Architectural DesignAbstract
In recent years, the design process in architecture has experienced significant increments arising from computational design, which allowed the exploration of design alternatives in real time based on parametric modeling. In the building's design, understanding most of the measurement systems in the context of natural ventilation could drive the decision-making process from the tests with computational simulations. This paper attempts to determine the flow pattern of natural ventilation in indoor environments under specific conditions from the CFD Ansys Fluent® R22 comprising five configurations analyzed comparatively to a control sample. Respecting the scientific reductions and using computational techniques for measurement from Aeronautics, satisfactory inferences were registered. We concluded that the diagonal positioning of the openings substantially accelerates the wind speed in indoor environments. This design strategy overrides the proposition of more openings when the intention is to increase the speed and renewal of indoor air.
References
ABBAS, G.; DINO, İ. A parametric design method for CFD-supported wind-driven ventilation. IOP Conference Series: Materials Science and Engineering, Reino Unido, v. 609, p. 1-7, 2019. DOI: 10.1088/1757-899X/609/3/032010
ASHRAE – AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS ANSI/ASHRAE Standard 62.1-2019. Ventilation for Acceptable Indoor Air Quality (2019).
BLOCKEN, B.; CARMELIET, J. CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, v. 95, p. 941-962, 2007. DOI: 10.1016/j.jweia.2007.01.013
BOVO, M.; SANTOLINI, E.; BARBARESI, A.; P. TASSINARI, P.; TORREGGIANI, D. Assessment of geometrical and seasonal effects on the natural ventilation of a pig barn using CFD simulations. Computers and Electronics in Agriculture, v. 193, p. 1-17, 2022. DOI: 10.1016/j.compag.2021.106652
CERMAK, J. E.; POREH, M.; PETERKA, J. A.; AYAD, S. S. Wind tunnel investigations of natural ventilation, Journal of Transportation Engineering, v. 110, p. 67–79, 1984.
CIBSE – Chartered Institution of Building Services Engineers. Natural ventilation in non-domestic buildings, Londres, 2005. ISBN: 1 903287 56 1
CUCE, E.; SHER, F.; SADIQ, H.; CUCE, P.; BESIR, A. Sustainable ventilation strategies in buildings: CFD research, Sustainable Energy Technologies and Assessments. Vol. 36, p. 1-10, 2019. DOI: 10.1016/j.seta.2019.100540
CUI, P.; CHEN, W.; WANG, J.; ZHANG, J.; HUANG, Y.; TAO, W. Numerical studies on issues of Re-independence for indoor airflow and pollutant dispersion within an isolated building. Building Simulation, v. 15, p. 1259-1276, 2022. DOI: 10.1007/s12273-021-0846-z
D’ALICANDRO, A.; MAURO, A. Effects of operating room layout and ventilation system on ultrafine particle transport and deposition. Atmospheric Environment, v. 270, p. 1-15, 2022. DOI: 10.1016/j.atmosenv.2021.118901
DAO, H.; KIM, K. Behavior of cough droplets emitted from Covid-19 patient in hospital isolation room with different ventilation configurations. Building and Environment, v. 209, p. 1-11, 2022. DOI: 10.1016/j.buildenv.2021.108649
DONN, M. R.; BAKSHI, N. A natural ventilation “calculator”: The challenge of defining a representative ‘performance sketch’ in practice and research. Materials Science and Engineering, v. 609, p. 1-7, 2019. DOI:10.1088/1757-899X/609/7/072045
ELSHAFEI, G.; NEGM, A.; BADY, M.; SUZUKI, M.; IBRAHIM, M. Numerical and experimental investigations of the impacts of window parameters on indoor natural ventilation in a residential building. Energy and Buildings, v. 141, p. 321-332, 2017. DOI:10.1016/j.enbuild.2017.02.055
ELWAN, M.; DEWAIR, H. Lattice windows as a natural ventilation strategy in hot, humid regions. Simulation for a Sustainable Built Environment, v. 397, p, 1-15, 2019. DOI: 10.1088/1755-1315/397/1/012022
FU, X.; HAN, M. Analysis of Natural Ventilation Performance Gap between Design Stage and Actual Operation of Office Buildings. Web of Conferences, v. 172, p. 1-6, 2020. DOI: 10.1051/e3sconf/20201720 0 9 10
GIVONI, B. Basic Study of Ventilation Problems in Housing in Hot Countries. Haifa: Building Research Station, Technion, Israel Institute of Technology, 1962
GIVONI, B. Climate Considerations in Building and Urban Design. Londres: John Wiley & Sons, 1998. ISBN: 978-0-471-29177-0
HAWENDI, S.; GAO, S. Impact of an external boundary wall on indoor flow field and natural cross-ventilation in an isolated family house using numerical simulations. Journal of Building Engineering, v.10, p. 109-123, 2017. DOI: 10.1016/j.jobe.2017.03.002
IRWIN, P.; DENOON, R.; SCOTT, D. Wind Tunnel Testing of High-Rise Buildings. Londres, 2013. ISBN: 9780415714594
IZADYAR, N.; MILLER, W.; RISMANCHI, B.; GARCIA-HANSEN, V. Numerical simulation of single-sided natural ventilation: Impacts of balconies opening and depth scale on indoor environment, IOP Conference Series: Earth and Environmental Science, Reino Unido, v. 463, p. 1-6, 2020. DOI: 10.1088/1755-1315/463/1/012037
KABOŠOVÁ, L. Analysis of wind-adaptive architecture. IOP Conference Series: Materials Science and Engineering, Reino Unido, v. 867, p. 1-8, 2020. DOI: 10.1088/1757-899X/867/1/012014
KHOSROWJERDI, S.; SARKARDEH, H.; KIOURMARSI, M. Effect of wind load on different heritage dome buildings. European Physical Journal Plus, v. 136 p. 1-18, 2021. DOI: 10.1140/epjp/s13360-021-02133-0
KONG, X; CHANG, N.; LI, H.; LI, W. Comparison study of thermal comfort and energy saving under eight different ventilation modes for space heating. Building Simulation, v. 15, p. 1323-1337, 2022. DOI: 10.1007/s12273-021-0814-7
KÜÇÜKTOPCU, E.; CEMEK, B.; SIMSEK, H.; NI, J. Computational Fluid Dynamics modeling of a broiler house microclimate in summer and winter. Animals, v. 12, p .1-16, 2022. DOI: 10.3390/ani12070867
KUMAR, N.; BARDHAN, R.; KUBOTA, T.; TOMINAGA, Y.; SHIRZADI, M. Parametric study on vertical void configurations for improving ventilation performance in the mid-rise apartment building. Building and Environment, v. 215, p. 1-16, 2022. DOI: 10.1016/j.buildenv.2022.108969
KWOK, H.; CHENG, J.; LI, A.; LAU, A. Impact of shaft design to thermal comfort and indoor air quality of floors using BIM technology. Journal of Building Engineering, v. 51, p. 1-19, 2022. DOI: 10.1016/j.jobe.2022.104326
KWOK, H.; CHENG, J.; LI, A.; TONG, J.; LAU, A. Multi-zone indoor CFD under limited information: An approach coupling solar analysis and BIM for improved accuracy. Journal of Cleaner Production, v. 244, p. 1-14, 2020. DOI: 10.1016/j.jclepro.2019.118912
LAURINI, E.; VITA, M.; BERARDINIS, P.; FRIEDMAN, A. Passive Ventilation for Indoor Comfort: a comparison of results from monitoring and simulation for a historical building in a temperate climate. Sustainability, v. 10, p. 1-20, 2018. DOI: 10.3390/su10051565
LEZCANO, R; BURGOS, M. Airflow analysis of the Haida plank house, a breathing envelope. Energies, v. 14, p. 1-14, 2021. DOI:10.3390/en14164871
LI, W.; SUBIANTORO, A.; MCCLEW, I.; SHARMA, R. CFD simulation of wind and thermal-induced ventilation flow of a roof cavity. Building Simulation, v. 15, p. 1611-1627, 2022. DOI: 10.1007/s12273-021-0880-x
LUKIANTCHUKI, M. A.; SHIMOMURA, A. P.; SILVA, F. M.; CARAM, R. M. Wind tunnel and CFD analysis of wind-induced natural ventilation in sheds roof building: impact of alignment and distance between sheds. International Journal of Ventilation, v. 19, p. 141-162, 2020. DOI: 10.1080/14733315.2019.1615219
MANUAL, U. D. F. ANSYS FLUENT 22.0. Theory Guide, Ansys INC, Pensilvânia, 2022.
MEI, X.; ZENG, C.; GONG G. Predicting indoor particle dispersion under dynamic ventilation modes with high-order Markov chain model. Building Simulation, v. 15, p. 1243-1258, 2022. DOI: 10.1007/s12273-021-0855-y
NASROLLAHI, N.; GHOBADI, P. Field measurement and numerical investigation of natural cross-ventilation in high-rise buildings; Thermal comfort analysis. Applied Thermal Engineering, v. 211, p. 1-25, 2022. DOI: 10.1016/j.applthermaleng.2022.118500
OBEIDAT, B.; KAMAL, H.; ALMALKAWI, A. CFD Analysis of an Innovative Wind Tower Design with Wind-Inducing Natural Ventilation Technique for Arid Climatic Conditions. Journal of Ecological Engineering, v. 22, p. 86-97, 2021. DOI: 10.12911/22998993/130894
OLGYAY, V.; Olgyay, A. Design with Climate: Bioclimatic Approach to Architectural Regionalism. Princeton: University Press, Nova Jersey, 1963. ISBN: 9780691169736
OUYANG, K.; HAGHIGHAT, F. A procedure for calculating thermal response factors of multi-layered walls-state space method. Building and Environment, v. 26 (2), p. 173–177, 1991. DOI: 10.1016/0360-1323(91)90024-6
PHILLIPS, D. A.; SOLIGO, M. J. Will CFD ever replace wind tunnels for building wind simulations? International Journal of High-Rise Buildings, v. 8 n. 2, p. 107-116, 2019. DOI: 10.21022/IJHRB.2019.8.2.107
SAKIYAMA, N. R. M.; FRICK, J.; BEJAT, T; GARRECHT, H. Using CFD to Evaluate Natural Ventilation through a 3D Parametric Modeling Approach. Energies, v.14, p. 1-27, 2021. DOI: 10.3390/en14082197
SAKIYAMA, N.R.M.; CARLO, J. C.; FRICK, J.; GARRECHT, H. Perspectives of naturally ventilated buildings: a review. Renewable and Sustainable Energy Reviews, v. 130, p. 1-18, 2020. DOI: 10.1016/j.rser.2020.109933
SUBHASINI, S.; THIRUMARAN, K. CFD simulations for examining natural ventilation in the learning spaces of an educational building with courtyards in Madurai. Building Services Engineering Research and Technology, v. 41, p. 466 – 479, 2019. DOI: 10.1177/0143624419878798
TAN, L.; YUAN, Y. Computational fluid dynamics simulation and performance optimization of an electrical vehicle Air-conditioning system. Alexandria Engineering Journal, Alexandria, v. 61, p. 315-328, 2022. DOI: 10.1016/j.aej.2021.05.001
WEERASURIYAA, U.; ZHANGA, GANA, V.; TAN, Y. A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings. Building and Environment, v. 153 p 218 – 232, 2019. DOI: 10.1016/j.buildenv.2019.02.027
ZHANG, T.; ZHANG, Y.; GAO, A.; RAO, Y.; ZHAO, Q. Study on the kinetic characteristics of indoor air pollutants removal by ventilation. Building and Environment, v. 207, p. 1-8, 2022. DOI: 10.1016/j.buildenv.2021.108535
ZHANG, X.; WEERASURIYA, A. U.; WANG, J.; LI, C. Y.; CHEN, Z.; TSE, K. T. Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment, v. 207, p. 1-18, 2022b. DOI: 10.1016/j.buildenv.2021.108447
ZHANG, Y.; KACIRA, M. Analysis of climate uniformity in indoor plant factory system with computational fluid dynamics (CFD). Biosystems Engineering, v. 220, p.73-86, 2022. DOI: 10.1016/j.biosystemseng.2022.05.009
ZHANG, Z.; YIN, W.; WANG, T.; O’DONOVAN, A. Effect of cross-ventilation channel in classrooms with interior corridor estimated by computational fluid dynamics. Indoor and Built Environment, v. 31, p. 1047-1065, 2022a. DOI: 10.1177/1420326X211054341
ZHENG, X.; SHI, Z.; XUAN, Z.; QIAN, H. Natural Ventilation, Handbook of Energy Systems in Green Buildings. p. 1227-1270, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
This work is licensed under a Creative Commons Attribution 4.0 International License.