Urban cooling strategies applying at neighborhood scale for facing heatwave events
DOI:
https://doi.org/10.46421/encac.v17i1.4139Palabras clave:
urban cooling strategies, neighborhood, heatwaves, computational simulationResumen
Nowadays climate change is already affecting weather and climate extremes across the world, the scale of recent changes is unprecedented. Defined as prolonged periods of excessive heat, heatwaves are a specific type of extreme temperature event. Heatwaves are among the most dangerous of natural hazards. The study explored and analyzed how the implementation of heat-stress resilience strategies can create cooler settlements at neighborhood scale in arid contexts (Metropolitan Mendoza Area-Argentina). The methodology consists in an outdoor microclimate campaign and a computational model construction and statical validation for test outdoor cooling strategies (cool materials, street trees, densified, and the combination between them) in six scenarios. Results shows that combined strategies performance better, densified+cool materials+street trees, and cool materials+street trees. These scenarios can reduce temperatures for projected heatwave events by 3.8ºC in the maximum, 1.0ºC in the minimum and 2.1ºC in the average air temperatures; and 3.8ºC in the maximum, 0.8ºC in the minimum and 1.9ºC in the average air temperatures respectively. The main approach of the study is the evaluating of feasible strategies with the scope of generate neighborhood scale planning recommendations for cities with arid climates. Further studies would determinate which resilience strategy can be the most viable and cost-effective.
Citas
ADAPTATION GAP REPORT (2021). “The Gathering Storm. Adapting to climate change in a post-pandemic world”, United Nations Environment Programme, https://www.unep.org/adaptation-gap-report-2021.
ALCHAPAR, N. AND CORREA, E. (2015). “Comparison the Performance of Different Facade materials for Reducing Building Cooling needs”. Eco-efficient materials for Mitigating Building Cooling Needs, Woodhead Publishing, Cambridge, pp. 155–194.
BARROS, V., BONINSEGNA, J., CAMILLONI, I., CHIDIAK, M., MAGRÍN, G. AND RUSTICUCCI, M. (2015). “Climate change in Argentina: Trends, projections, impacts and adaptation”, Wiley interdisciplinary reviews: Climate Change, Vol. 6, pp.151-169, doi: 10.1002/wcc.316
CARVALHO, D., MARTINS, H., MARTA-ALMEIDA, M., ROCHA, A. AND BORREGO C. (2017). “Urban resilience to future urban heat waves under a climate change scenario: a case study for Porto urban area (Portugal)”, Urban Climate, Vol. 19, pp. 1-27. 10.1016/j.uclim.2016.11.005
CHHETRI, P., HASHEMI, A., BASIC, F., MANZONI, A. AND JAYATILLEKE, G. (2012). “Bushfire, Heat Wave and Flooding Case Studies from Australia”, Report from the International Panel of the Weather project funded by the European Commission’s 7th framework programme, Melbourne, March 2012.
CORREA, E., SOSA, M., CANTÓN, M. AND RUIZ, M. (2021). “Urban Morphology as a Mitigation Strategy of Urban Warming in ``Oasis Cities´´ of Arid Regions”, Urban Microclimate Modelling for Comfort and Energy Studies, Springer, Cham. pp. 419-441. https://doi.org/10.1007/978-3-030-65421-4_20
FIGUEIREDO, L., HONIDEN, T. AND SCHUMANN, A. (2018). “Indicators for Resilient Cities”, OECD Regional Development Working Papers 2018/02, https://dx.doi.org/10.1787/6f1f6065-en.
GONZALEZ J., RAMAMURTHY, P., BORNSTEIN, R., CHEN, F., BOU-ZEID, E., GHANDEHARI, M., LUVALL, J., MITRA, C. AND NIYOGI, D. (2021). “Urban climate and resiliency: A synthesis report of state of the art and future research directions”, Urban Climate, Vol. 38, https://doi.org/10.1016/j.uclim.2021.100858
IPCC (2021). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V. et al. (eds.). Cambridge University Press. In Press. www.ipcc.ch/report/ar6/wg1/downloads/report/ IPCC_AR6_WGI_SPM.pdf.
MÜLLER, G.V., LOVINO, M.A. AND SGROI, L.C. (2021). “Observed and Projected Changes in Temperature and Precipitation in the Core Crop Region of the Humid Pampa”, Argentina, Climate, Vol. 9. https://doi.org/10.3390/cli9030040
NAIRN, J. AND FAWCETT, R. (2015). “The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity”, International Journal of Environmental Research and Public Health, Vol. 12, pp. 227-253; doi:10.3390/ijerph120100227
OLMO, M., BETTOLLI, M. L. AND RUSTICUCCI, M. (2020). “Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America”, Weather and Climate Extremes, Vol. 29, pp.DOI: 10.1016/j.wace.2020.100267
PERKINS, S. E. AND ALEXANDER, L. V. (2013). “On the measurement of heat waves” J. Clim., Vol. 26, pp. 4500-4517
PERKINS-KIRKPATRICK, S. E. AND LEWIS, S. C. (2020). “Increasing trends in regional heatwaves”, Nature communications, Vol. 11. https://doi.org/10.1038/s41467-020-16970-7
RIKKERT, M., MELIS, R. AND CLAASSEN J. (2009). “Heat waves and dehydration in the elderly”. BMJ 339.
SCHIPPER, E.L.F. AND L. LANGSTON (2015), “A comparative overview of resilience measurement frameworks”, Working Paper No. 422, Overseas Development Institute, London, https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/9754.pdf.
SCHUMANN, A. (2016), "Using Outcome Indicators to Improve Policies: Methods, Design Strategies and Implementation", OECD Regional Development Working Papers, No. 2016/02, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jm5cgr8j532-en.
SCHUMANN, A. (2016), "Using Outcome Indicators to Improve Policies: Methods, Design Strategies and Implementation", OECD Regional Development Working Papers, No. 2016/02, OECD Publishing, Paris. http://dx.doi.org/10.1787/5jm5cgr8j532-en.
SMN (2023). Reporte servicio meteorológico nacional de Argentina. Retrieved from: https://www.smn.gob.ar/noticias/tiempo-y-clima-resumen-2019-0
SOSA, B., CORREA, E. AND CANTÓN, A. (2017). “Urban grid forms as a strategy for reducing heat island effects in arid cities”, Sustainable Cities and Society, Vol. 32, pp. 547-556. http://dx.doi.org/10.1016/j.scs.2017.05.003
SOSA, B., CORREA, E. AND CANTÓN, A. (2020). “Eficacia de estrategias de disminución del calentamiento urbano. Estudio para una ciudad de clima árido”, Informes de la Construcción, Vol. 72. https://doi.org/10.3989/ic.66662.
SOSA, M., CORREA, E., AND CANTÓN, M. (2018). “Neighborhood designs for low-density social housing energy effciency: Case study of an arid city in Argentina”, Energy and Buildings, Vol. 168, pp. 137-146. https://doi.org/10.1016/j.enbuild.2018.03.006
ZHANG, C., KAZANCI, O., LEVINSON, R., HEISELBERG, P., B., OLESEN, B., CHIESA, G., SODAGAR, B., AI, Z., SELKOWITZ, S., ZINZI, M., MAHDAVI, A., TEUFL, H., KOLOKOTRONI, M., SALVATI, A., BOZONNET, E., CHTIOUI, F., SALAGNAC, P., RAHIF, R., ATTIA, S., LEMORT, V., ELNAGAR, E., BREESCH, H., SENGUPTA, A., WANG, L., QI, D., STERN, P., YOON, N., BOGATU, D., RUPP, R., ARGHAND, T., JAVED, S., JAKANDER, J., HAYATI, A., CEHLIN, M., SAYADI, S., FORGHANI, S., ZHANG, H., ARENS, E. AND ZHANG, G. (2021). “Resilient cooling strategies–A critical review and qualitative assessment”, Energy and Buildings, Vol. 251, https://doi.org/10.1016/j.enbuild.2021.111312.
ZUO, J., PULLEN, S., PALMER, J., BENNETTS, H., CHILESHE, N. AND MA, T. (2014). “Impacts of heat waves and corresponding measures: a review”, Journal of Cleaner Production, Vol. 92, pp. 1-12. 10.1016/j.jclepro.2014.12.078
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.