Análise bibliométrica da integração de tubos de calor e termossifões na envoltória de edificações

Autores

DOI:

https://doi.org/10.46421/entac.v20i1.5918

Palavras-chave:

Análise Bibliométrica, Tubos de calor, Termossifão, Edificações

Resumo

Devido à urgente necessidade de redução do consumo de energia ocasionado pelo atual panorama climático, nos últimos anos, mais atenção é dada às novas tecnologias de transferência de calor na envoltória de edificações com intuito de controlar a temperatura interna com menor custo energético. Uma dessas tecnologias são os tubos de calor (heat pipes - HP) e termossifões (termosyphons – TS) que podem ser operados passivamente e não exigem nenhum custo energético para sua operação. Uma análise bibliométrica foi realizada sobre a integração de HPs e TSs na envoltória de edificações. As buscas foram conduzidas entre setembro e outubro de 2023 a partir de 2 strings em 3 Bases indexadoras de dados (Scopus, Web of Science e EBSCO). Além disso, incluiu-se também uma busca no Google Scholar através do método Snowball, sendo selecionados 74 artigos. Observou-se predominância de autores chineses quando se tratava do uso de HPs e TSs em paredes. Estes trabalhos serviram de base para o desenvolvimento de outros mais avançados, no Reino Unido e Estados Unidos. Em linhas gerais, observa-se um aumento no interesse pelo tema na última década, evidenciando a relevância da tecnologia.

Biografia do Autor

Rafael Roque Rossi, Universidade Federal de Santa Catarina

Graduando em Engenharia Mecânica na Universidade Federal de Santa Catarina (Florianópolis-SC, Brasil).

Fernando da Silva Almeida, Universidade Federal de Santa Catarina

Doutorando e Mestre pelo Programa de Pós-Graduação em Arquitetura Urbanismo na Universidade Federal de Santa Catarina (Florianópolis - SC, Brasil).

Mariane Pinto Brandalise, Universidade Federal de Santa Catarina

Doutora em Arquitetura e Urbanismo pela Universidade Federal de Santa Catarina. Professora na Universidade Estadual de Santa Catarina (Florianópolis- SC, Brasil).

Marcia Barbosa Henriques Mantelli, Universidade Federal de Santa Catarina

Doutora em Engenharia Mecânica pela University of Waterloo, Canadá. Professora Associada na Universidade Federal de Santa Catarina (Florianópolis - SC, Brasil).

Martin Ordenes Mizgier, Universidade Federal de Santa Catarina

Doutor em Engenharia Civil pela Universidade Federal de Santa Catarina. Professor Associado na Universidade Federal de Santa Catarina (Florianópolis- SC, Brasil).

Referências

S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan, and D. Shou, “Personal Thermal Management by Radiative Cooling and Heating,” Nano-Micro Lett., vol. 16, no. 1, p. 153, Dec. 2024, doi: 10.1007/s40820-024-01360-1.

R. A. Betts, C. D. Jones, J. R. Knight, R. F. Keeling, and J. J. Kennedy, “Provisional State of the Global Climate 2023.” Sep. 2023. Accessed: Jan. 19, 2024. [Online]. Available: https://www.nature.com/articles/nclimate3063

G. Gholamibozanjani and M. Farid, “A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings,” Energies, vol. 14, no. 7, p. 1929, Mar. 2021, doi: 10.3390/en14071929.

C. Yu, D. Shen, W. He, Z. Hu, S. Zhang, and W. Chu, “Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology,” Renewable Energy, vol. 178, pp. 1057–1069, Nov. 2021, doi: 10.1016/j.renene.2021.07.001.

Abdou Idris Omar, Adriana Guadalupe Salazar Ruiz, Ade Awujoola, G C Modgil, Ahmed Bolbol, Alejandra Acevedo, and Andre-Daniel Mueller, “2022 GLOBAL STATUS REPORT FOR BUILDINGS AND CONSTRUCTION,” 2022, [Online]. Available: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction

European Parliament, “Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings.” 2010. [Online]. Available: https://eur-lex.europa.eu/eli/dir/2010/31/oj

R. Levinson et al., “Policy recommendations from IEA EBCAnnex 80: Resilient Cooling of Buildings,” [object Object], 2023. doi: 10.20357/B7288C.

J. Jose and T. Hotta, “A comprehensive review of heat pipe: Its types, incorporation techniques, methods of analysis and applications,” THERMAL SCIENCE AND ENGINEERING PROGRESS, vol. 42, Jul. 2023, doi: 10.1016/j.tsep.2023.101860.

M. B. H. Mantelli, Thermosyphons and Heat Pipes: Theory and Applications. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-62773-7.

Z. Zhang, Z. Sun, and C. Duan, “A new type of passive solar energy utilization technology - The wall implanted with heat pipes,” Energy and Buildings, vol. 84, pp. 111–116, 2014, doi: 10.1016/j.enbuild.2014.08.016.

B. Yao, K. Zhang, J. Zhu, and S. Wu, “Optimization study on the performance of a thermosyphon-based radiative cooler,” INDOOR AND BUILT ENVIRONMENT, vol. 32, no. 2, pp. 425–439, Feb. 2023, doi: 10.1177/1420326X221117758.

R. S. Anand, C. P. Jawahar, A. B. Solomon, and E. Bellos, “A review of experimental studies on cylindrical two-phase closed thermosyphon using refrigerant for low-temperature applications,” International Journal of Refrigeration, vol. 120, pp. 296–313, Dec. 2020, doi: 10.1016/j.ijrefrig.2020.08.011.

V. Guichet and H. Jouhara, “Condensation, evaporation and boiling of falling films in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations,” International Journal of Thermofluids, vol. 1–2, p. 100001, Feb. 2020, doi: 10.1016/j.ijft.2019.100001.

M. Ramezanizadeh, M. Alhuyi Nazari, M. H. Ahmadi, and E. Açıkkalp, “Application of nanofluids in thermosyphons: A review,” Journal of Molecular Liquids, vol. 272, pp. 395–402, Dec. 2018, doi: 10.1016/j.molliq.2018.09.101.

J. Cao et al., “A review on independent and integrated/coupled two-phase loop thermosyphons,” Applied Energy, vol. 280, p. 115885, Dec. 2020, doi: 10.1016/j.apenergy.2020.115885.

M. V. Albanese, B. S. Robinson, E. G. Brehob, and M. Keith Sharp, “Simulated and experimental performance of a heat pipe assisted solar wall,” Solar Energy, vol. 86, no. 5, pp. 1552–1562, May 2012, doi: 10.1016/j.solener.2012.02.017.

M. Ebrahim Poulad, A. Fung, and S. Lefrene, “Thermosyphon In Buildings: A Solution For Thermal Bridging,” presented at the 2017 Building Simulation Conference, Aug. 2013. doi: 10.26868/25222708.2013.2538.

A. Burlacu et al., “Innovative Passive and Environmentally Friendly System for Improving the Energy Performance of Buildings,” Materials, vol. 15, no. 20, p. 7224, Oct. 2022, doi: 10.3390/ma15207224.

F. Fantozzi et al., “An Innovative Enhanced Wall to Reduce the Energy Demand in Buildings,” J. Phys.: Conf. Ser., vol. 796, p. 012043, Jan. 2017, doi: 10.1088/1742-6596/796/1/012043.

P. Bellani, F. Milanez, M. B. H. Mantelli, S. Filippeschi, M. Mameli, and F. Fantozzi, “Theoretical and experimental analyses of the thermal resistance of a loop thermosyphon for passive solar heating of buildings,” Interfac Phenom Heat Transfer, vol. 7, no. 1, pp. 57–68, 2019, doi: 10.1615/InterfacPhenomHeatTransfer.2019031160.

S. Varga, A. C. Oliveira, and C. F. Afonso, “Characterisation of thermal diode panels for use in the cooling season in buildings,” Energy and Buildings, vol. 34, no. 3, pp. 227–235, Mar. 2002, doi: 10.1016/S0378-7788(01)00090-1.

C. Yan, W. Shi, X. Li, and S. Wang, “A seasonal cold storage system based on separate type heat pipe for sustainable building cooling,” Renewable Energy, vol. 85, pp. 880–889, Jan. 2016, doi: 10.1016/j.renene.2015.07.023.

T. Yan, J. Gao, X. Xu, T. Xu, Z. Ling, and J. Yu, “Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self-activated heat removal,” International Journal of Thermal Sciences, vol. 144, pp. 27–41, Oct. 2019, doi: 10.1016/j.ijthermalsci.2019.05.015.

W. He et al., “Experimental study on the performance of a novel RC-PCM-wall,” Energy and Buildings, vol. 199, pp. 297–310, Sep. 2019, doi: 10.1016/j.enbuild.2019.07.001.

N. Chami and A. Zoughaib, “Modeling natural convection in a pitched thermosyphon system in building roofs and experimental validation using particle image velocimetry,” Energy and Buildings, vol. 42, no. 8, pp. 1267–1274, Aug. 2010, doi: 10.1016/j.enbuild.2010.02.019.

B. S. Robinson, N. E. Chmielewski, A. Knox-Kelecy, E. G. Brehob, and M. K. Sharp, “Heating season performance of a full-scale heat pipe assisted solar wall,” Solar Energy, vol. 87, pp. 76–83, Jan. 2013, doi: 10.1016/j.solener.2012.10.008.

T. Yan, Z. Sun, J. Gao, X. Xu, J. Yu, and W. Gang, “Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation,” Renewable Energy, vol. 146, pp. 1451–1464, Feb. 2020, doi: 10.1016/j.renene.2019.07.060.

W. He, X. Hong, X. Zhao, X. Zhang, J. Shen, and J. Ji, “Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system,” Energy and Buildings, vol. 77, pp. 180–191, 2014, doi: 10.1016/j.enbuild.2014.03.053.

Downloads

Publicado

2024-10-07

Como Citar

ROQUE ROSSI, Rafael; DA SILVA ALMEIDA, Fernando; PINTO BRANDALISE, Mariane; BARBOSA HENRIQUES MANTELLI, Marcia; ORDENES MIZGIER, Martin. Análise bibliométrica da integração de tubos de calor e termossifões na envoltória de edificações. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 20., 2024. Anais [...]. Porto Alegre: ANTAC, 2024. p. 1–12. DOI: 10.46421/entac.v20i1.5918. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/5918. Acesso em: 3 dez. 2024.

Edição

Seção

Conforto Ambiental e Eficiência Energética

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.