RESILIÊNCIA EVOLUTIVA NO SETOR HABITACIONAL: UMA PROPOSTA DE ESTRUTURA CONCEITUAL

Autores

  • Morgane Bigolin Universidade Federal do Rio Grande do Sul
  • Juliana Giazzon Cavalli Universidade Federal do Rio Grande do Sul
  • Luiz Carlos Pinto Silva Filho Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.46421/entac.v18i.929

Palavras-chave:

resiliência evolutiva, edificação evolutiva, riscos naturais

Resumo

A resiliência está se estabelecendo como uma das principais agendas urbanas do século XXI. Houve um aumento no número de estudos sobre cidades resilientes em todo o mundo. O objetivo é criar iniciativas que permitam aos tomadores de decisão lidar com os riscos naturais que os centros urbanos contemporâneos enfrentam, causados principalmente pelas mudanças climáticas. O setor habitacional, no entanto, ainda não adotou um conceito holístico de resiliência. As estratégias de projeto baseadas na abordagem de previsão e controle de riscos geralmente não reduzem efetivamente os danos. Com base em revisão da literatura, este trabalho discute como aplicar a resiliência evolutiva desenvolvida para sistemas socioecológicos no setor habitacional. Ao aplicar a teoria da resiliência, esta investigação visa examinar a aplicabilidade da abordagem de resiliência evolutiva e desenvolver uma estrutura alternativa que possa ser usada no setor habitacional. As contribuições deste trabalho são particularmente importante na maneira como o projeto, a inspeção, manutenção e conservação de edificações são estruturadas e gerenciadas em regiões propensas a desastres.

Referências

Alexander, D. E. (2013). Resilience and disaster risk reduction: An etymological journey. Natural Hazards and Earth System Sciences, 13(11), 2707–2716. https://doi.org/10.5194/nhess-13-2707-2013Berkes, F., Folke, C., (1998). Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience, vol. 1. pp. 13–20.

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Winterfeldt, D.

Von. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497Carpenter, S. R., Westley, F., Turner, M. G. (2005). Surrogates for resilience of social-ecological systems. Ecosystems, 8(8), 941–944. https://doi.org/10.1007/s10021-005-0170-yCarpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? Ecosystems, 4(8), 765–781. https://doi.org/10.1007/s10021-001-0045-9Champagne, C. L., Aktas, C. B. (2016). Assessing the Resilience of LEED Certified Green Buildings.

Procedia Engineering, 145, 380–387. https://doi.org/10.1016/j.proeng.2016.04.095Coetzee, C., Niekerk, D. Van, Raju, E. (2016). Emergent system behaviour as a tool for understanding disaster resilience: The case of Southern African subsistence agriculture.

International Journal of Disaster Risk Reduction, 16, 115–122. https://doi.org/http://dx.doi.org/10.1016/j.ijdrr.2016.02.001Davoudi, S., Brooks, E., Mehmood, A. (2013). Evolutionary resilience and strategies for climate adaptation. Planning Practice and Research, 28(3), 307–322.

Davoudi, S., Zaucha, J., Brooks, E. (2016). Evolutionary Resilience and Complex Lagoon Systems.

Integrated Environmental Assessment and Management, 12(4), 711–718. https://doi.org/10.1002/ieam.1823Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience Thinking: Integrating Resilience, Adaptability and Transformability. Ecology and Society, 15(4), 20. https://doi.org/10.1038/nnano.2011.191Gunderson, L. H. (2000). Ecological Resilience — in Theory and Application. Annual Review of Ecology and Systematics, 31, 425–439.

Hassler, U., Kohler, N. (2014). Resilience in the built environment. Building Research & Information, 42(March 2015), 119–129. https://doi.org/10.1080/09613218.2014.873593Holling, C. S. (1973). Resilience and Stability of ecological Systems. Annual Review of Ecological and Systematics, 4, 1–23.

Hollnagel, E. (2014). Resilience engineering and the built environment. Building Research & Information, 42(2), 221–228. https://doi.org/10.1080/09613218.2014.862607Johnsen, K., Winther, F. V. (2015). Dynamic Facades, the Smart Way of Meeting the Energy Requirements. Energy Procedia, 78, 1568–1573. https://doi.org/10.1016/j.egypro.2015.11.210Law, J. (2002). Objects and Spaces. Theory, Culture & Society, 19(5–6), 91–105. https://doi.org/10.1177/026327602761899165Liao, K. (2012). A Theory on Urban Resilience to Floods. Ecology and Society, 17(4).

Lizarralde, G., Chmutina, K., Bosher, L., Dainty, A. (2015). Sustainability and resilience in the built environment: The challenges of establishing a turquoise agenda in the UK. Sustainable Cities and Society, 15, 96–104. https://doi.org/10.1016/j.scs.2014.12.004Loonen, R. C. G. M., Trčka, M., Cóstola, D., Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483–493. https://doi.org/10.1016/j.rser.2013.04.016Mwasha, A., Williams, R. G., Iwaro, J. (2011). Modeling the performance of residential building envelope: The role of sustainable energy performance indicators. Energy and Buildings, 43(9), 2108–2117. https://doi.org/10.1016/j.enbuild.2011.04.013Olewnik, A., Brauen, T., Ferguson, S., Lewis, K. (2004). A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making. Journal of Mechanical Design, 126(3), 412–419. https://doi.org/10.1115/1.1701874Sacks, R., Pikas, E. (2013). Building Information Modeling Education for Construction Engineering and Management. I: Industry Requirements, State of the Art, and Gap Analysis. Journal of Construction Engineering and Management, 139(11). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000759.

Siddiqi, A., de Weck, O. L. (2008). Modeling Methods and Conceptual Design Principles for Reconfigurable Systems. Journal of Mechanical Design, 130(10). https://doi.org/10.1115/1.2965598Shaikh, P. H., Nor, N. M., Nallagownden, P., Elamvazuthi, I. (2013). Intelligent Optimized Control System for Energy and Comfort Management in Efficient and Sustainable Buildings. Procedia Technology, 11, 99–106. https://doi.org/10.1016/j.protcy.2013.12.167Tam, V. W. Y. (2011). Cost effectiveness of using low cost housing technologies in construction.

Procedia Engineering, 14, 156–160. https://doi.org/10.1016/j.proeng.2011.07.018Walker, B., Holling, C. S., Carpenter, S. R., Kinzig, A. (2004). Resilience, Adaptability and Transformability in Social – ecological Systems. Ecology and Society, 9(2), 5. https://doi.org/10.1103/PhysRevLett.95.258101Wong, J. K. W., Li, H., Wang, S. W. (2005). Intelligent building research: A review. Automation in Construction, 14(1), 143–159. https://doi.org/10.1016/j.autcon.2004.06.001

Downloads

Publicado

2020-11-04

Como Citar

BIGOLIN, Morgane; CAVALLI, Juliana Giazzon; SILVA FILHO, Luiz Carlos Pinto. RESILIÊNCIA EVOLUTIVA NO SETOR HABITACIONAL: UMA PROPOSTA DE ESTRUTURA CONCEITUAL. In: ENCONTRO NACIONAL DE TECNOLOGIA DO AMBIENTE CONSTRUÍDO, 18., 2020. Anais [...]. Porto Alegre: ANTAC, 2020. p. 1–8. DOI: 10.46421/entac.v18i.929. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/929. Acesso em: 4 dez. 2024.

Artigos Semelhantes

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.