REQUISITOS DE DESEMPENHO E EFICIÊNCIA ENERGÉTICA PRESENTES EM CERTIFICAÇÕES AMBIENTAIS: LEED E BREEAM
DOI:
https://doi.org/10.46421/entac.v18i.976Palavras-chave:
Certificação ambiental, LEED, BREEAM, Desempenho energéticoResumo
Mitigar os impactos ambientais requer mudanças no modo de produzir e consumir. Surge nesse contexto as construções verdes que contam com características e estratégias mais coerentes com a capacidade regenerativa do planeta. Tal ramo da construção civil pode ser pautado pelos requisitos das certificações ambientais, que dão grande importância à eficiência energética e ao desempenho térmico dos edifícios. Em nível internacional destaca-se a certificação LEED e a BREEAM. No presente trabalho investiga-se, por meio de revisão de literatura, como tem sido correlacionado o tema da certificação ambiental e o desempenho energético dos edifícios. Os resultados indicam que muitos artigos abordam os dois temas e não há predominância de uma linha de pesquisa. Verifica-se que há um número reduzido de artigos que investigam os custos das certificações e o impacto no conforto dos usuários. As construções verdes têm grande papel no desenvolvimento sustentável e averiguar como elas afetam o consumo energético, bem como, o conforto dos usuários é fundamental.
Referências
ABDEL-AAL, M.F. et al. Wakala buildings of Mamluk era in Cairo, Egypt and how far they meet the rating criteria of LEED V4 (2018). Alexandria Eng. J., 57 (4), pp. 3793-3803.
ABRAHAM, T.G. et al. Energy conservation measures for an office building in warm and humid climate (2016). Indian J. of Science and Technology, 9 (44), art. no. 105318.
AKCAY, E.C., ARDITI, D. Desired points at minimum cost in the “Optimize Energy Performance” credit of leed certification (2017). J. of Civil Engineering and Management, 23 (6), pp. 796-805.
ALTOMONTE, S. et al. Indoor environmental quality and occupant satisfaction in green-certified buildings (2019). Building Research and Information, 47 (3), pp. 255-274.
BAJA, F.D.F. et al. Leed gold but not equal: Two case study buildings (2019) Int. J. of Design and Nature and Ecodynamics, 14 (1), pp. 52-62.
BERNARDI, E. et al. An analysis of the most adopted rating systems for assessing the environmental impact of buildings (2017). Sustainability 9 (1226), 1–27.
BESEN, P., BOARIN, P. The future of historic buildings: Retrofitting to improve the thermal performance of New Zealand architectural heritage (2018). WIT Trans. on Ecology and the Environ., 217, pp.15-27.
BISEGNA, F. et al. Influence of insulating materials on green building rating system results (2016).
Energies, 9 (9), art. no. 712.
CHENG, W., BEHZADSODAGAR, F. Comparative analysis of environmental performance of an office building using BREEAM and GBL (2017). Int. J. of Sust. Dev. and Planning,12(3),pp.528-540.
CLEMENT, S. et al. The Procura+ Manual: A Guide to Implementing Sustainable Procurement, 3rd Edition. Friburgo, Alemanha. 2016. Procura+. Disponível em: .
DE OLIVEIRA, J.C., DE FARIA, A.C. Economic impact of sustainable construction: The renovation of the Mineirão Stadium (2019). Urbe, 11, art. no. e20180031,GBC Brasil. Conheça a certificação LEED. 2019. GBC Brasil. Disponível em: <https://www.gbcbrasil.org.br/certificacao/certificacao-leed/>.
GREENAN, R., MUIR, B. New Zealand's building performance pathways (2017). Int. J. of Sust. Develop.
and Planning, 12 (2), pp. 252-263.
GURGUN, A.P., ARDITI, D. Assessment of energy credits in LEED-certified buildings based on certification levels and project ownership (2018). Buildings, 8 (2), art. no. 29.
KAZAZ, A., ISTIL, S.A. A comparative analysis of sunshine duration effects in terms of renewable energy production rates on the LEEDBD+ C projects in Turkey. (2019) Energies, 12(6),art.no. 1116.
KIM, S.-K. et al. Occupant comfort and satisfaction in green healthcare environments: A survey study focusing on healthcare staff (2015) J. of Sustain. Develop., 8(1), pp.156-173.
NEMRY, F. et al. Options to reduce the environmental impacts of residential buildings in the European Union-Potential and costs. Energy and Buildings, v. 42, n. 7, p. 976–984, 2010.
OBERTI, I., PLANTAMURA, F. The inclusion of natural elements in building design: The role of green rating systems (2017). Int. J. of Sust. Develop. and Planning, 12 (2), pp. 217-226.
PALMER, K., WALLS, M. Using information to close the energy efficiency gap: a review of benchmarking and disclosure ordinances (2017). Energy Efficiency, 10 (3), pp. 673-691.
PRITCHARD, R., KELLY, S. Realising operational energy performance in non-domestic buildings: Lessons learnt from initiatives applied in Cambridge (2017). Sustainability, 9 (8), art. no. 1345.
PUGLIERO, V.S. et al. Overview of certification methodologies for sustainable constructions of Brazilian buildings (2015).Am. J. of Applied Sciences,12(3),pp.216-221.
PUSHKAR, S. A comparative analysis of gold leadership in energy and environmental design for new construction 2009 certified projects in Finland, Sweden, Turkey, and Spain (2018). Applied Sciences(Switzerland), 8 (9), art. no. 1496.
REEVES, T. et al. Guidelines for using BIM for energy analysis of buildings (2015). Buildings,5(4),pp.1361-1388.
REY-HERNÁNDEZ, J.M. et al. Energy analysis at a near zero energy building. A case-study in Spain (2018). Energies, 11 (4), art. no. 857.
SHIN, M.H. et al. LEED, its efficacy and fallacy in a regional context-An Urban heat island case in California (2017). Sustainability(Switzerland), 9(9), no. 1674.
SUN, X. et al. Strengths and weaknesses of existing building green retrofits: Case study of a LEEDEBOM gold project (2018). Energies, 11 (8), art. no. 1936,.
STOJANOVSKA-GEORGIEVSKA, L. et al. An empirical survey on the awareness of construction developers about green buildings in Macedonia (2018) Thermal Science, 22, pp. 897-907.
UNEP, U. N. E. P. The Impacts of SPP: Eight Illustrative Case Studies. UNEP. Paris, France, 2012.
WANG, X., WU, N.Q., QIAO, Y., SONG, Q.B. Assessment of energy-saving practices of the hospitality industry in Macau (2018). Sustainability (Switzerland), 10 (1), art. no. 255.