The usage of smart objects as a innovation proposal for the concrete control production chain in Brazil

Authors

DOI:

https://doi.org/10.46421/entac.v19i1.2000

Keywords:

Productive chain, Technological Control of Concrete, Smart Objects, Real-time monitoring

Abstract

Currently, the compressive strength test for technological control of concrete has two limitations, there are numerous factors that influence the test result and there is a waiting period to perform the test that can become expensive in the future due to the progress of the work. In this sense, this work presents a proposal reconfiguration of the production chain of technological control of concrete from the use of Smart Objects. For this, the factors that influence the technological control, the state of the art of continuous monitoring and the discussion about the user impacts of the sensing method are presented.

Author Biographies

Jonathan Chefaly Mochon Zappile, Universidade de São Paulo

Master's student in Civil Engineering at the University of São Paulo (São Paulo - SP, Brazil)

Renan Andrade, University of Sao Paulo

Master in Civil Engineering from the University of São Paulo (São Paulo - SP, Brazil).

Flávio Maranhão, Universidade de São Paulo

PhD in Civil Engineering from the University of São Paulo (São Paulo - SP, Brazil).

References

ACI Committee Reports. ACI 228.1R-03. In-Place Methods to Estimate Concrete Strength Reported. n. 228, 1R, p. 44, 2003.

AHMADI, J.; FEIRAHI, M.; FARAHMAND, S.; KESHVARI, A. A novel approach for non-destructive EMI-based corrosion monitoring of concrete-embedded reinforcements using multi-orientation piezoelectric sensors. Construction and Building Materials, v. 273, 2021. DOI: 10.1016/j.conbuildmat.2020.121689.

ALSHAMRANI, Mazin. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. Journal of King Saud University - Computer and Information Sciences, 2021. DOI: 10.1016/j.jksuci.2021.06.005.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM C 1074: Standard Practice for Estimating Concrete Strength by the Maturity Method maturity index and maturity method. p. 1–11, 2019. DOI: 10.1520/C1074-19.2.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 12655: Concreto de cimento Portland — Preparo, controle, recebimento e aceitação — Procedimento. Rio de Janeiro, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16889: Concreto - Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 2020.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 7212: Execução de concreto dosado em central — Procedimento. Rio de Janeiro, 2012.

ASSOCIAÇÃO BRASILEIRA NORMAS TÉCNICAS. ABNT NBR 7680-1: Concreto — Extração, preparo, ensaio e análise de testemunhos de estruturas de concreto Parte 1: Resistência à compressão axial. Rio de Janeiro, 2015.

FARIA, R. Concreto não conforme. Téchne, v. 152, p. 10, 2009.

GIATEC SCIENTIFIC INC. Case Studies. 2022b. Disponível em: https://www.giatecscientific.com/case-studies/. Acesso em: 24 maio. 2022.

GIATEC SCIENTIFIC INC. Strength Maturity. 2022a. Disponível em: https://www.giatecscientific.com/strength-maturity/. Acesso em: 24 maio. 2022.

HUSSEIN, W.; HUSSAIN, H.; HUMOD, I. A proposed framework for healthcare based on cloud computing and IoT applications. Materials Today: Proceedings, 2022. DOI: 10.1016/j.matpr.2021.12.505.

KULDEEP, G.; ZHANG, Q. Multi-class privacy-preserving cloud computing based on compressive sensing for IoT. Journal of Information Security and Applications, v. 66, n. 8057, 2022. DOI: https://doi.org/10.1016/j.jisa.2022.103139.

MAGALHÃES, F.; CHIES, J.; SILVA, V.; REAL, M.; PINTO, C. Concreto não conforme – Análise da influência do local do ensaio nos resultados de resistência à compressão de um mesmo lote. ANAIS DO 55o CONGRESSO BRASILEIRO DO CONCRETO, n. 1, p. 1–12, 2013.

MAGALHÃES, F.; REAL, M.; SILVA, L. Efeitos das operações de controle tecnológico do concreto na avaliação da confiabilidade de pilares de concreto armado. Matéria (Rio de Janeiro), v. 23, n. 3, 2018. DOI: 10.1590/s1517-707620180003.0491.

MARTINS, A., Filho H. Verificação da resistência do concreto in loco: métodos de ensaios mais usuais. Vetor, v. 25, p. 25–40, 2015.

MISHRA, M.; LOURENÇO, P.; RAMANA, G. Structural health monitoring of civil engineering structures by using the internet of things: A review. Journal of Building Engineering, v. 48, n. January, 2022. DOI: 10.1016/j.jobe.2021.103954.

MISHRA, R.; RAMESH, D.; EDLA, D.; MOHAMMAD, N. Fibonacci tree structure based privacy preserving public auditing for IoT enabled data in cloud environment. Computers and Electrical Engineering, v. 100, fev, 2022. DOI: 10.1016/j.compeleceng.2022.107890.

NEVILLE, A. M. Propriedades do Concreto. 5. ed. 2016.

POORARBABI, A.; GHASEMI, M.; AZHDARY, M. Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal, v. 11, n. 4, p. 939–949, 2020. DOI: 10.1016/j.asej.2020.02.009.

RATHORE, M.; AHMAD, A.; PAUL, A.; RHO, S. Urban planning and building smart cities based on the Internet of Things using Big Data analytics. Computer Networks, v. 101, p. 63–80, 2016. DOI: 10.1016/j.comnet.2015.12.023.

SAUL, A. Principles underlying the steam curing of concrete at atmospheric pressure. Magazine of Concrete Research, v. 2, p. 127–140, 1951.

Scopus. Analyze search results: Real-time AND monitoring AND concrete. 2022. Disponível em: https://www.scopus.com/term/analyzer.uri?sort=plf-f&src=s&sid=98a48c88d7bdf47cb6f10a24573f3437&sot=a&sdt=a&sl=45&s=TITLE-ABS-KEY+%28real-time+monitoring+concrete%29&origin=resultslist&count=10&analyzeResults=Analyze+results. Acesso em: 9 ago. 2022.

SERAFINI, R.; RAMBO, D.; FIGUEIREDO, A.; CURTI, R.; SOMOGYI, R. Controle Contínuo Da Resistência De Estruturas De Concreto Pelo Método Da Maturidade. CONCRETO & Construções, v. XLVIII, n. 98, p. 85–90, 2020. DOI: 10.4322/1809-7197.2020.98.0009.

TASONG, A.; ABAO, R. Design and development of an IoT application with visual analytics for water consumption monitoring. Procedia Computer Science, v. 157, p. 205–213, 2019. DOI: 10.1016/j.procs.2019.08.159.

WANG, D.; REN, B.; CUI, B.; WANG, J.; WANG, X.; GUAN, T. Real-time monitoring for vibration quality of fresh concrete using convolutional neural networks and IoT technology. Automation in Construction, v. 123, n. December 2019, 2021. DOI: 10.1016/j.autcon.2020.103510.

ZUO, Z.; HUANG, Y.; PAN, X.; ZHAN, Y.; ZHANG, L.; LI, X.; ZHU, M.; ZHANG, L.; DE CORTE, W. Experimental research on remote real-time monitoring of concrete strength for highrise building machine during construction. Measurement: Journal of the International Measurement Confederation, v. 178, n. April, 2021. DOI: 10.1016/j.measurement.2021.109430.

Published

2022-11-07

How to Cite

ZAPPILE, Jonathan Chefaly Mochon; ANDRADE, Renan; MARANHÃO, Flávio. The usage of smart objects as a innovation proposal for the concrete control production chain in Brazil. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–13. DOI: 10.46421/entac.v19i1.2000. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2000. Acesso em: 23 nov. 2024.

Issue

Section

(Inativa) Tecnologia da Informação e Comunicação

Most read articles by the same author(s)

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.