Comparative analysis of thermal performance in historic building according to two thermal conduction calculation algorithms

Authors

DOI:

https://doi.org/10.46421/entac.v19i1.2004

Keywords:

Moisture on the walls. Hygrothermal performance. Filamentous fungi. Hygrothermal simulations. Heat and moisture transfer.

Abstract

This study aims to present a comparative analysis of the hygrothermal behavior of the masonry walls of a historic building from the 19th century, located in Pelotas, RS, in the bioclimatic zone (ZB2). The analysis is performed through simulations using in EnergyPlus and Wufi Pro software considering the Heat and Moisture Transfer and Conduction and Convection algorithms, for a naturally ventilated building. The results showed that the hygrothermal performance of the construction system is a little better with membrane, and that the two algorithms present similar behavior, however, the walls of the historic building do not present satisfactory results.

Author Biographies

Maritza da Rocha Macarthy, Universidade Federal de Pelotas

Mestrado em Arquitetura e Urbanismo pela Universidade Federal de Pelotas (Pelotas - RS, Brasil).

Luiza Coutinho Bernardes , Universidade Federal de Pelotas

Mestrado em Arquitetura e Urbanismo pela Universidade Federal de Pelotas. (Pelotas - RS, Brasil).

Carolina de Mesquita Duarte, Universidade Federal de Pelotas

Mestrado em Arquitetura e Urbanismo pela Universidade Federal de Pelotas.(Pelotasa - RS, Brasil).

Luciane Andreola Beber, Universidade Federal de Pelotas

Mestrado em Arquitetura e Urbanismo pela Universidade Federal de Pelotas.(Pelotas - RS, Brasil).

Giane de Campos Grigoletti, Universidade Federal de Santa Maria

Doutora em Engenharia Civil pela Universidade Federal do Rio Grande do Sul

Professor Assistente na Universidade Federal de Santa Maria (Santa Maria - RS, Brasil).

Eduardo Grala da Cunha, Universidade Federal de Pelotas

Doutor em Arquitetura e Urbanismo pela Universidade Federal do Rio Grande do Sul. 

Professor Associado na UFPel

References

GUERRA, F. L. Biodeterioração de conjunto histórico do século XIX em Pelotas/RS: fungos filamentosos. Dissertação (Mestrado em Arquitetura e Urbanismo) – Universidade Federal de Pelotas, Pelotas, 2012.

JORNE, F. J. F. Análise do comportamento higrotérmico de soluções construtivas de paredes em regime variável. Dissertação (Mestrado em Engenharia Civil) – Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa, Lisboa, 2010.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15220-2: Desempenho Térmico de Edificações. Rio de Janeiro, 2005.

GUERRA, F. L.; CUNHA, E. G.; SILVA, A. C. B.; KNOP, S. Análise das condições favoráveis à formação de bolor em edificação histórica de Pelotas, RS, Brasil. Ambientes Construído, Porto Alegre, v. 12, n. 4, p. 7–23, 2012.

MENDES, N. Modelos para Previsão da Transferência de Calor e de Umidade em Elementos Porosos de Edificações. Tese (Doutorado em Engenharia Mecânica) – Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal de Santa Catarina, Florianópolis, 1997.

KNOP, S. Comportamento Termoenergético de Edificação Histórica com novo uso na Cidade de Pelotas: O Caso do Casarão 02 – Secretaria Municipal da Cultura. Dissertação (Mestrado em Arquitetura e Urbanismo) – Universidade Federal de Pelotas, Pelotas, 2012.

AFONSO, T. M. Desempenho higrotérmico de edificações e procedimentos para previsão de ocorrência de bolores em ambientes internos: estudo de caso em habitações construídas com paredes de concreto. Dissertação de Mestrado pela IPT- Instituto de Pesquisas Tecnológicas do Estado de São Paulo São Paulo 2018.

FRAUNHOFER INSTITUTE FOR BUILDING PHYSICS. WUFI® Pro 6.5 manual. Holzkirchen, 2018.

DEUTSCHES INSTITUT FÜR NORMUNG. EN 15026: Hygrothermal performance of building components and building elements: assessment of moisture transfer by numerical simulation. Berlin, 2007.

DOE, U.S. DEPARTMENT OF ENERGY. Getting started EnergyPlus Version 9.0 Documentation, 2018.

ZANONI, Vanda A. G.; DANTAS, André L. DE F.; NUNES, L. S.; RIOS, R. B. Estudo higrotérmico na autoconstrução: simulação computacional e medições em campo. Ambiente Construído, Porto Alegre, v. 20, p. 109–120, 2020.

NASCIMENTO, M.L.M. Aplicação da Simulação Higrotérmica na Investigação da Degradação de Fachadas de Edifícios. Dissertação (Mestrado em Estruturas e Construção Civil) Universidade de Brasília, Brasília, 2016.

PESCARU, R. A.et al Comparative Analysis of Hygrothermal Behaviour of the

Exterior Walls in Transient Regime.IOP Conference Series: Materials Science and

Engineering, v. 586, 2019.

HENRIQUES, Fernando M.A. - Comportamento Higrotérmico de Edifícios. Lisboa, UNL-FCT, 2007.

MORISHITA, C. On the assessment of potential moisture risks in residential buildings across Brazil. Tese (Doutorado em Engenharia Mecânica) – Curso de Pós-Graduação em Engenharia Mecânica, Pontifícia Universidade Católica do Paraná, 2020.

ISO 13788 Desempenho higrotérmico de componentes e elementos de construção - Temperatura da superfície interna para evitar umidade superficial crítica e condensação intersticial - Métodos de cálculo, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15270: Componentes Cerâmicos. Rio de Janeiro, 2017.

SECULT. Secretaria de Educação e Cultura de Pelotas, Pelotas, RS.

LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES – LABEEE. PROJETEEE. Florianópolis. Universidade Federal de Santa Catarina. Disponível em: < http://projeteee.mma.gov.br/componentes-construtivos/ >. Acesso em: 20 jan. 2021.

INSTITUTO NACIONAL DE METEOROLOGIA, QUALIDADE E TECNOLOGIA - INMETRO. Regulamento Técnico da Qualidade para o Nível de Eficiência Energética de Edificações Comerciais, RTQ-C, 2012.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15270: Componentes Cerâmicos. Rio de Janeiro, 2017.

MARTINS D. J.; RAU S. L.; RECKZIEGEL S.; PRIEBE, A.; SILVA, A. C. B. Ensaio sobre a utilização da automação de aberturas na simulação do desempenho térmico de edificações. In: Encontro Nacional e VI Encontro Latino-Americano de conforto no ambiente construído, 10. e 6., 2009, Natal, RN. Anais […]. Natal: ENTAC, 2009. 1 CD-ROM.

ASHRAE 160. ASHRAE Standard 160: Criteria for Moisture - Control Design Analysis in Buildings. Atlanta, USA, 2016.

LEITZKE, R. K.; BELTRAME, C. M.; FREITAS, J. R. de; SEIXAS, J. N.; MACIEL, T. S.; CUNHA, E. G. da; RHEINGANTZ, P. A. Optimization of the Traditional Method for Creating a Weather Simulation File: The Pelotas.epw Case. Journal of Civil Engineering and Architecture, v. 12, p. 741-756, 2018. ASHRAE 160. ASHRAE Standard 160: Criteria for Moisture - Control Design Analysis in Buildings. Atlanta, USA, 2016.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, EMBRAPA. Normais climatológicas: estacional. Disponível em: < http://www.cpact.embrapa.br/agromet/estacao/estacional.html >. Acesso em 20 de julho de 2021.

FRANÇA, C. M. C. Avaliação dos Programas para Quantificar Condensações em Engenharia Civil. Dissertação (Mestrado em Engenharia Civil) – Universidade do Porto, Porto, Portugal, 2013.

DEUTSCHES INSTITUT FÜR NORMUNG. DIN 4108-2: Wärmeschutz und Energie - Einsparung in Gebäuden – Teil 2: Mindestanforderungen na den Wärmeschutz. Berlin, 2003.

SEDLBAUER, K. Prediction of mould fungus formation on the surface of an inside building components. Fraunhofer Institute for Building Physics, 2001.

Published

2022-11-07

How to Cite

DA ROCHA MACARTHY, Maritza; COUTINHO BERNARDES , Luiza; MESQUITA DUARTE, Carolina de; ANDREOLA BEBER, Luciane; CAMPOS GRIGOLETTI, Giane de; GRALA DA CUNHA, Eduardo. Comparative analysis of thermal performance in historic building according to two thermal conduction calculation algorithms. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–16. DOI: 10.46421/entac.v19i1.2004. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2004. Acesso em: 3 jul. 2024.

Issue

Section

(Inativa) Conforto Ambiental e Eficiência Energética

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 28 > >> 

You may also start an advanced similarity search for this article.