Special works of art: non-destructive tests in reinforced concrete structures of different ages

Authors

  • Silvia Roberta Souza Universidade Federal de Minas Gerais
  • Abner Araujo Fajardo Universidade Federal de Minas Gerais
  • Maria Teresa Barbosa Universidade Federal de Juiz de Fora
  • Ubirajara Domingos de Castro Pontifícia Universidade Católica de Minas Gerais
  • White Santos Universidade Federal de Minas Gerais/Professor

DOI:

https://doi.org/10.46421/entac.v19i1.2019

Keywords:

Concrete, hardness index, carbonation, durability, bridges

Abstract

The concrete of three bridges of different ages (94, 62 and 4 years) in the state of Minas Gerais was characterized, focusing on durability and maintenance. Documentation and construction elements were collected, and the concrete of the three bridges was visually and by non-destructive tests (pacometry, carbonation and sclerometry) analyzed. It was identified the deterioration conditions, the environmental characteristics in which they are inserted (the effect of age and aggressiveness) in correlation with the carbonation and sclerometry of the concrete. Durability was compromised, caused by the high degree of carbonation, insufficient thickness of reinforcement cover and deficiency in mechanical properties.

References

VAYAS, Loannis; ARISTIDIS, Lliopoulos. Design of steel-concrete composite bridges to Eurocodes. New York, 2014.

ALEXANDER, Mark; BENTUR, Arnon; MINDESS, Sidney. Durability of Concrete: Design and Construction. 1 ed. New York, 2017. 345p.

AZENHA, Miguel; GABRIJEL, Ivan; SCHLICKE, Dirk; KANSTAD, Terje; JENSEN, Ole Mejlhede. Systems and Structures in Civil Engineering Conference segment on Service Life of Cement-Based Materials and Structures. International Rilem Conference on Materials. Technical University of Denmark, Lyngby, Denmark. v. 1, p. 22-24, Agosto, 2016.

DYER, Thomas. Concrete Durability.1. ed. New York: Ed Crc Pres 2014.447p. ENGEPLUS. Disponível em <http://www.engeplus.com.br/noticia/transito/2019/duplicacao-da-br-101-tem-48-pontes-em-operacao> acesso em: 01/12/2019.

GIRALDO, John Mario García; GIRALDO, Jaime Ospina; GOMES, Edir Amparo Graciano. La infraestructura de puentes em las vias secundarias del departamento de antioquia. EIA. v.11, n. 22, p. 119-131, Dezembro, 2014.

INSTITUTO BRASILEIRO DO CONCRETO IBRACON - IBRACON. Seminários sobre riscos e acidentes estruturais em obras de engenharia civil. Casos de colapsos estruturais em pontes, viadutos e passarelas. p. 42. Recife, 12 de novembro de 2015.

SINAENCO - SINDICATO NACIONAL DAS EMPRESAS DE ARQUITETURA E ENGENHARIA CONSULTIVA - Infraestrutura de Minas Gerais: Prazo de validade vencido, p. 25, 2016.

FOWLER, Dale E. The findings of an empirical study of the application of criminal law in non-terrorist disasters and tragedies 2017. Futures. v. 102, p. 134-145, Setembro 2018.

MOON, J. Hyuck. Cracks Everywhere: How the Seongsu Bridge Collapse Changed Seoul’s Urban Personality.51 f. May 18, 2011.

BARBOSA, Maria Teresa; POLISSENI, Antônio Eduardo; HIPPERT, Maria Aparecida; SANTOS, White José dos Santos. Patologias de Edifícios Históricos Tombados Estudo de Caso – Cine Teatro Central. Vitruvius, Janeiro 2011.

TANG, S.W.; YAO, Y.; ANDRADE, C.; LI, Z.J. Recent durability studies on concrete structure Review. Article Cement and Concrete Research. v. 78, p. 143-154, Dezembro, 2015.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de estruturas de concreto — Procedimento. Rio de Janeiro, 2014.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7584: Concreto endurecido — Avaliação da dureza superficial pelo esclerômetro de reflexão — Método de ensaio. Rio de Janeiro, 2013.

BARBOSA, M T; ROSSE, V.; LAURINDO, N. Thermography evaluation strategy proposal due moisture damage on building facades. J. Building Engineering. 2021. 102555.

PHILLIPSON, M. C., EMMANUEL, R., BAKER, P. H. The durability of building materials under a changing climate. WIREs, Clim Change. 2016. 590-599. DOI: 10.1002/wcc.398.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15575: Edificações habitacionais — Desempenho, Parte 1: Requisitos gerais. Rio de Janeiro, 2021.

VÖLKER, Christoph et al. Multi sensor data fusion approach for automatic honeycomb detection in concrete. Ndt & e International, [s.l.], v. 71, p. 54-60, abr. 2015.

HELLEBOIS, Armande et al. 100-year-old Hennebique concrete, from composition to performance. Construction And Building Materials, [s.l.], v. 44, p. 149-160, Julho. 2013.

BROOMFIELD, John P. Corrosion of Steel in Concrete. Understanding, Investigation and Repair. Second ed. New York, USA. 2007, p. 294.

FELIX, E, F.; CARRAZEDO, R.; POSSAN, E. Carbonation model for fly ash concrete based on artificial neural network: Development and parametric analysis. Construction and Building Materials, v. 266, p. 121050, Janeiro. 2021.

WITKOWSKI, H.; KONIORCZYK, M. The influence of pozzolanic additives on the carbonation rate and Life Cycle Inventory of concrete. Construction And Building Materials, v. 254, p. 119301-9, Setembro. 2020.

CASCUDO, O.; PIRES, P.; CARASEK, H. et al. Evaluation of the pore solution of concretes with mineral additions subjected to 14 years of natural carbonation. Cement And Concrete Composites, v. 115, p. 103858-13, Janeiro. 2021

RAMACHANDRAN, D.; UTHAMAN, S.; VISHWAKARMA, V. Studies of carbonation process in nanoparticles modified fly ash concrete. Construction And Building Materials, v. 252, p. 119127-10, Agosto. 2020.

WANG, X-H.; VAL, D, V.; ZHENG, L. et al. Carbonation of loaded RC elements made of different concrete types: accelerated testing and future predictions. Construction And Building Materials, v. 243, p. 118259-14, May. 2020.

SHI, J.; WU, M.; MING, J. Degradation effect of carbonation on electrochemical behavior of 2304 duplex stainless steel in simulated concrete pore solutions. Corrosion Science, v. 177, p. 109006-18, Dezembro. 2020.

MAGALHÃES, A. G.; SILVA, F. J.; REZENDE, M. A. P. et al. The Influence of the Water/Cement Ratio in the Open Porosity and in the Carbonation Front Advancing in Cementitious Matrix Composites. Applied Mechanics and Materials, vol. 864, p. 313–317, Abril. 2017.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: frota de veículos. 2018a. Disponível em <https://cidades.ibge.gov.br/brasil/mg/rio-acima/pesquisa/22/28120> acesso em: 15 de January de 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: população. 2020a. Disponível em <https://www.ibge.gov.br/cidades-e-estados/mg/rio-acima.html> acesso em: 15 de January de 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: população. 2020b. Disponível em <https://www.ibge.gov.br/cidades-e-estados/mg/santa-luzia.html> 15 de January de 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: frota de veículos. 2018b. Disponível em <https://cidades.ibge.gov.br/brasil/mg/santa-luzia/pesquisa/22/28120> acesso em: 15 de January de 2021.

CHEN, G.; LV, Y.; ZHANG, Y. et al. Carbonation depth predictions in concrete structures under changing climate condition in China. Engineering Failure Analysis, v. 119, p. 104990, Outubro. 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: população. 2020c. Disponível em <https://www.ibge.gov.br/cidades-e-estados/mg/belo-vale.html> acesso em: 15 de January de 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Cidades e esta-dos: frota de veículos. 2018c. Disponível em <https://cidades.ibge.gov.br/brasil/mg/belo-vale/pesquisa/22/28120> acesso em: 15 de January de 2021.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NB1 1940: Cálculo e execução de concreto armado. Rio de Janeiro, 1940.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NB1 1960: Cálculo e execução de obras de concreto armado, Cargas móveis em pontes rodoviárias, Barras de aço torcidas a frio para concreto armado. Rio de Janeiro, 1960.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7188: Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas. Rio de Janeiro, 2013.

SINGH, N. SINGH, S.P. Evaluating the performance of self compacting concretes made with recycled coarse and fine aggregates using non destructive testing techniques. Construction And Building Materials, v. 181, p. 73-84, Agosto. 2018.

POORARBABI, A. GHASEMI, M. MOGHADDAM, M. Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal. v. 11, p. 939-949.Dezembro. 2020.

ŠAVIJA, Branko; LUKOVIC´, Mladena. Carbonation of cement paste: Understanding, challenges, and opportunities. Construction and Building Materials.v.117, p. 285-301, 2016.

SZILÁGYI, K.; BOROSNYÓI, A.; ZSIGOVICS, I. Rebound surface hardness of concrete: Introduction of an empirical constitutive model. Construction and Building Materials, vol. 25, no. 5, p. 2480–2487, Dezembro. 2011.

ANN, K.Y.; PACK, S.-W.; HWANG, J.-P. et al. Service life prediction of a concrete bridge structure subjected to carbonation. Construction And Building Materials, [S.L.], v. 24, n. 8, p. 1494-1501, Agosto. 2010. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2010.01.023.

KUMAVAT, H.R. CHANDAK, N.R. PATIL, I.T. Factors influencing the performance of rebound hammer used for non-destructive testing of concrete members: A review. Case Studies in Construction Materials. v.14, p. e00491. June. 2021.

KAZEMI, M. MADANDOUST, R. BRITO, J. Compressive strength assessment of recycled aggregate concrete using Schmidt rebound hammer and core testing. Construction and Building Material. v. 224. p. 630-638. Novembro. 2019.

KOVLER, K. WANG, F. MURAVIN, B. Testing of concrete by rebound method: leeb versus Schmidt hammers. Materials and Structures. v.51, p. 138. Outubro. 2018.

AMERICAN CONCRETE INSTITUTE - ACI 228 - 1R, In place methods for determination of strength of concrete, Detroit, p. 26, 1989.

Published

2022-11-07

How to Cite

SOUZA, Silvia Roberta; FAJARDO, Abner Araujo; BARBOSA, Maria Teresa; CASTRO, Ubirajara Domingos de; SANTOS, White. Special works of art: non-destructive tests in reinforced concrete structures of different ages. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–12. DOI: 10.46421/entac.v19i1.2019. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2019. Acesso em: 24 nov. 2024.

Issue

Section

(Inativa) Tecnologias de Sistemas e Processos Construtivos

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.