Probabilistic model proposal to evaluate the indoor environmental comfort of rooms
DOI:
https://doi.org/10.46421/entac.v19i1.2021Keywords:
Indoor Environmental Comfort, Performance, Bayesian networks, Building Information Modeling, Digital TwinAbstract
Este trabalho adapta um modelo probabilístico que tinha o objetivo de avaliar o conforto ambiental interno de uma edificação. A adaptação proposta muda o foco para um ambiente específico, e aprimora o modelo considerando a coleta de dados monitorados por sensores, tornando a entrada de dados mais complexa. Para tanto, as variáveis do modelo e as relações de causalidade entre elas foram revistas. Além disso, intervalos dos possíveis estados de algumas variáveis foram definidos com base em uma revisão de literatura e normatizações. Os resultados incluem o modelo e uma discussão sobre sua aplicabilidade na criação de um Gêmeo Digital.
References
ABISUGA, A.O.; FAMAKIN, I.O.; OSHODI, O.S. Educational building conditions and the health of users, Construction Economics and Building. 16 (2016) 19–34. doi:10.5130/ajceb.v16i4.4979.
AGHA-HOSSEIN, M.M.; EL-JOUZI, S.; ELMUALIM, A.A.; ELLIS, J.; WILLIAMS, M. Post-occupancy studies of an office environment: Energy performance and occupants’ satisfaction, Building and Environment. 69 (2013) 121–130. doi:10.1016/j.buildenv.2013.08.003.
ALAVI, H.; FORCADA, N.; BORTOLINI, R.; EDWARDS, D.J. Enhancing occupants’ comfort through BIM-based probabilistic approach, Automation in Construction. 123 (2021) 103528. doi:10.1016/j.autcon.2020.103528.
AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS - ASHRAE, Thermal environmental conditions for human occupancy, ANSI/ASHRAE Standard - 55. 7 (2017) 6.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 10152:2017 - Níveis de pressão sonora em ambientes internos a edificações, 2017.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5413:1992: Iluminância de Interiores, 1992.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR ISO/CIE 8995-1: Iluminação de ambientes de trabalho - Parte 1: Interior, 2013.
AUFFENBERG, F.; SNOW, S.; STEIN, S.; ROGERS, A. A comfort-based approach to smart heating and air conditioning, ACM Transactions on Intelligent Systems and Technology. 9 (2017). doi:10.1145/3057730.
BLUYSSEN, P.M.; ARIES, M.; VAN DOMMELEN, P. Comfort of workers in office buildings: The European HOPE project, Building and Environment. 46 (2011) 280–288. doi:10.1016/j.buildenv.2010.07.024.
BORDBARI, M.J.; SEIFI, A.R.; RASTEGAR, M. Probabilistic energy consumption analysis in buildings using point estimate method, Energy. 142 (2018) 716–722. doi:10.1016/j.energy.2017.10.091.
BORTOLINI, R. Enhancing building performance: a Bayesian network model to support facility management. Tese (Doutorado em Construction Engineering. Universitat Politècnica de Catalunya (UPC). Barcelona, Espanha, 2019.
BORTOLINI, R.; FORCADA, N. A probabilistic performance evaluation for buildings and constructed assets, Building Research and Information. 0 (2019) 1–18. doi:10.1080/09613218.2019.1704208.
BORTOLINI, R.; FORCADA, N. A probabilistic-based approach to support the comfort performance assessment of existing buildings, Journal of Cleaner Production. 237 (2019) 117720. doi:10.1016/j.jclepro.2019.117720.
BRILAKIS, I.; PAN, Y.; BORRMAN, A.; MAYER, H.-G. Built Environment Digital Twinning, 2019.
CHAKRABORTY, S.; MENGERSEN, K.; FIDGE, C.; MA, L.; LASSEN, D. A Bayesian Network-based customer satisfaction model: a tool for management decisions in railway transport, Decision Analytics. 3 (2016). doi:10.1186/s40165-016-0021-2.
CHEN, J.; AUGENBROE, G.; WANG, Q.; SONG, X. Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation, Energy and Buildings. 146 (2017) 283–294. doi:10.1016/j.enbuild.2017.04.068.
FRONTCZAK, M.; WARGOCKI, P. Literature survey on how different factors influence human comfort in indoor environments, Building and Environment. 46 (2011) 922–937. doi:10.1016/j.buildenv.2010.10.021.
GIVONI, B. Climate considerations in building and urban design, John Wiley & Sons, 1998.
GLAESSGEN, E.H.; STARGEL, D.S. The digital twin paradigm for future NASA and U.S. Air force vehicles, Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. (2012) 1–14. doi:10.2514/6.2012-1818.
HOLICKÝ, M.; MARKOVÁ, J.; SÝKORA, M. Forensic assessment of a bridge downfall using Bayesian networks, Engineering Failure Analysis. 30 (2013) 1–9. doi:10.1016/j.engfailanal.2012.12.014.
KAN, C.; ANUMBA, C.J. Digital Twins as the Next Phase of Cyber-Physical Systems in Construction, in: Computing in Civil Engineering 2019, American Society of Civil Engineers, Reston, VA, 2019: pp. 256–264. doi:10.1061/9780784482438.033.
LANGEVIN, J.; WEN, J.; GURIAN, P.L. Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants, Building and Environment. 69 (2013) 206–226. doi:10.1016/j.buildenv.2013.07.017.
MARTÍNEZ, I.; ZALBA, B.; TRILLO-LADO, R.; BLANCO, T.; CAMBRA, R. Casas, Internet of things (Iot) as sustainable development goals (sdg) enabling technology towards smart readiness indicators (sri) for university buildings, Sustainability (Switzerland). 13 (2021). doi:10.3390/su13147647.
NGUYEN, L.D.; TRAN, D.Q.; CHANDRAWINATA, M.P. Predicting Safety Risk of Working at Heights Using Bayesian Networks, Journal of Construction Engineering and Management. 142 (2016) 04016041. doi:10.1061/(asce)co.1943-7862.0001154.
PEARL, J. Probabilistic reasoning in intelligent systems: Networks of plausible inference, Morgan Kaufmann, San Mateo, CA, 1991. doi:10.1016/0020-7101(91)90056-K.
PEARL, J; VERMA, T. A theory of inferred causation, (1994). Disponível em: http://ftp.cs.ucla.edu/pub/stat_ser/r156-reprint.pdf. Acesso em: 12 março 2022.
PREISER, Wolfgang; VISCHER, Jacqueline (Ed.). Assessing building performance. Routledge, 2005.
S.H. Chen, C.A. Pollino, Good practice in Bayesian network modelling, Environmental Modelling & Software. 37 (2012) 134–145. doi:10.1016/j.envsoft.2012.03.012.
SALINI, S.; KENNET, R.S. Bayesian networks of customer satisfaction survey data, Journal of Applied Statistics. 36 (2009) 1177–1189. doi:10.1080/02664760802587982.
TAO, F.; CHENG, J.; QI, Q.; ZHANG, M.; ZHANG, H.; SUI, F. Digital twin-driven product design, manufacturing and service with big data, International Journal of Advanced Manufacturing Technology. 94 (2018) 3563–3576. doi:10.1007/s00170-017-0233-1.
UUSITALO, L. Advantages and challenges of Bayesian networks in environmental modelling, Ecological Modelling. 203 (2007) 312–318. doi:10.1016/j.ecolmodel.2006.11.033.
WARGOKI, P.; PORRAS-SALAZAR, J.A.; CONTRERAS-ESPINOSA, S.; BAHNFLETH,W. The relationships between classroom air quality and children’s performance in school, Building and Environment. 173 (2020) 106749. doi:10.1016/j.buildenv.2020.106749.