Soil temperature calculation methods: impact on indoor environments in the historical and future period
DOI:
https://doi.org/10.46421/entac.v19i1.2099Keywords:
Ground Modeling, Computational Simulation, Climate ChangesAbstract
Soil temperature and climate change can directly influence the internal conditions of buildings, so the objective of this research is to analyze the influence of soil temperature calculation methods on the internal conditions of a bedroom, considering the historical period and future climate scenarios. The methodology consists of performing computer simulations to obtain soil temperatures, and evaluate their impact on internal conditions, using the adaptive comfort model. The results show that the choice of soil temperature calculation method is fundamental, as it directly impacts the internal conditions of the buildings.
References
SANTAMOURIS, M. Cooling the buildings – past, present and future. Energy and Buildings, v. 128, p.617-638, 2016.
GUAN, L. Preparation of future weather data to study the impact of climate change on buildings. Building and Environment, v. 44, p 793-800, 2009
WEATHERSHIFT™. Heat. Disponível em: < https://www.weathershift.com/heat>. Acesso em: 14 abr de 2022.
IPCC. Climate Change 2012: Manging the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 2012. DOI: https://doi.org/10.1017/CBO9781139177245.
NUNES, H. G; SANCHES, V. G; ZARA; B. R; GIGLIO, F. G. T. Análise de métodos de cálculo para determinação da temperatura do solo em simulações computacionais. XV Encontro Nacional de Conforto no Ambiente Construído. João Pessoa. 2019.
STANIEC, M; NOWAK, H. The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy and Buildings, v. 127, p 56-65, 2016.
POIEL, C. O; WOJTKOWIAK, J; BIERNACKA, B. Measurements of temperature distribution in ground. Experimental Thermal and Fluid Science, v. 25, p 301-309, 2001.
MAZZAFERRO, L; SORGATO, M. J; VERSAGE, R; MELO, A. P; LAMBERTS, R. Manual de simulação computacional de edifícios com o uso do pré-processador SLAB no programa EnergyPlus. Laboratório de Eficiência Energética de Edifícios, Florianópolis, 2013.
MAZZAFERRO, L; MELO, A. P; LAMBERTS, R. Manual de simulação computacional de edifícios com o uso do objeto Ground Domain no programa EnergyPlus. Laboratório de Eficiência Energética de Edifícios, Florianópolis, 2015.
CLEMENTS, E. Three Dimensional Foundation Heat Transfer Modules for WholeBuilding Energy Analysis. Dissertação (Mestrado) - The Pennsylvania State University). Pennsylvania, Estados Unidos, 2004.
BELCHER, S. E.; HACKER, J. N.; POWELL, D. S. Constructing design weather data for future climates. Building Services Engineering Research and Technology, v. 26, n. 1, p. 49–61, 2005. DOI: https://doi.org/10.1191/0143624405bt112oa
TRIANA, Maria Andrea; LAMBERTS, Roberto; SASSI, Paola. Characterisation of representative building typologies for social housing projects in Brazil and its energy performance. Energy Policy, v. 87, p. 524–541, 2015. DOI: https://doi.org/10.1016/j.enpol.2015.08.041
ABNT. ABNT NBR 15220-1 Desempenho térmico de edificações Parte 1: Definições, símbolos e unidades. Associação Brasileira de Normas Técnicas. Rio de Janeiro, 2003.
ABNT. NBR 15575. Associação Brasileira de Normas Técnicas. Rio de Janeiro, 2021.
ASHRAE. American Society of Heating Refrigerating and Air Conditioning Engineers. Standard 55-2017 Thermal Environmental Conditions for Human Occupancy. Atlanta, GA, United States: [s. n.], 2017.
CHVATAL, K. M. S; MARQUES, T. H. T. Avaliação de diferentes alternativas de modelagem de habitações de interesse social no programa de simulação de desempenho térmico Energyplus. Revista Tecnólogica, v.25, n.1, p.67-79, 2016.
SANTOS, G. H; MENDES, N. Moisture effects of unsaturated porus soils on ondoor air enthalpy. Ninth Internacional IBSPA Conference. Prceedings… Canada, 2005.
IPCC. Climate Change 2014. Synthesis Report. 2014