Algae photobioreactors integrated into building facades: a review of the basics to guide future work
DOI:
https://doi.org/10.46421/entac.v19i1.2118Keywords:
Photobioreactors, Microalgae, Bioenergy, Facades, BuildingsAbstract
Photobioreactors (PBRs) integrated into building facades can reduce energy consumption while at the same time contributing to the expansion of micro and mini distributed generation. This article aims to provide the foundation for future research through a detailed systematic review of the vital aspects of photobioreactors integrated into building facades. Information about the energy performance of PBRs integrated into buildings and their ability to act as a passive HVAC and lighting systems was obtained. The use of algae photobioreactors is a promising alternative but requires studies that can contribute to their validation in different scenarios.
References
AFONSO, M. H.; SOUZA, J. D.; ENSSLIN, S. R.; ENSSLIN, L. Como construir conhecimento sobre o tema de pesquisa? Aplicação do processo Proknow-C na busca de literatura sobre avaliação do desenvolvimento sustentável. Revista de Gestão Social e Ambiental, v. 5, n. 2, p. 47-62, 2011. DOI: http://dx.doi.org/10.5773/rgsa.v5i2.424
ARAJI, M. T.; SHAHID, I. Symbiosis optimization of building envelopes and micro-algae photobioreactors. Journal of Building Engineering, v. 18, p. 58-65, 2018. DOI: https://doi.org/10.1016/j.jobe.2018.02.008
BILORIA, N.; THAKKAR, Y. Integrating algae building technology in the built environment: A cost and benefit perspective. Frontiers of Architectural Research, v. 9, n. 2, p. 370-384, 2020. DOI: https://doi.org/10.1016/j.foar.2019.12.004
BRASIL. EMPRESA DE PESQUISA ENERGÉTICA (EPE). Balanço Energético Nacional 2021. Rio de Janeiro, 2021.
BRASIL. MINISTÉRIO DE MINAS E ENERGIA, EMPRESA DE PESQUISA ENERGÉTICA (EPE). Plano Nacional de Energia 2050. Brasília, 2020.
CHEMODANOV, A.; ROBIN, A.; GOLBERG, A.; Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresource Technology, v.241, p.1084-1093, 2017. DOI: https://doi.org/10.1016/j.biortech.2017.06.061
ELNOKALY, A. An Empirical Study Investigating the Impact of Micro-algal Technologies and their Application within Intelligent Building Fabrics. Procedia - Social and Behavioral Sciences, v. 216, p. 712-723, 2016. DOI: https://doi.org/10.1016/j.sbspro.2015.12.067
ELRAYIES, G. M. Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, v. 81, p. 1175-1191, jan. 2018. DOI: https://doi.org/10.1016/j.rser.2017.08.032
HEREDIA, V; GONÇALVES, O; MARCHAL, L; PRUVOST, J. Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions. Energies, v. 14, n. 5, p. 1-15, fev.2021. Doi: https://doi.org/10.3390/en14051246
KERNER, M.; GEBKEN, T.; SUNDARRAO, I.; HINDERSIN, S.; SAUSS, D.; Development of a control system to cover the demand for heat in a building with algae production in a bioenergy façade. Energy and Buildings, v. 184, p. 65-71, Fev. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.11.030
KIM, T. R.; HAN, S. H. Analysis for Energy Efficiency of the Algae Facade - Focused on Closed Bioreactor System, KIEAE Journal, v. 14, n. 6, p. 15-21, dez. 2014. DOI: https://doi.org/10.12813/kieae.2014.14.6
LAKENBRINK, H.; PETERSEN, J.P.; ROEDEL, C. Smart Material House - BIQ. IBA Hamburg GmbH, p. 1-22, jul.2013.
LAGE, S.; GOJKOVIC, Z.; FUNK, C.; GENTILI, F.G. Algal Biomass fromWastewater and Flue Gases as a Source of Bioenergy. Energies, v. 11, n. 3, p. 664-694, mar. 2018. DOI: https://doi.org/10.3390/en11030664.
NEGEV, E.; POLIKOVSKY, M.; KRIBUS, A.; YEZIORO, A. Algae Window for reducing energy consumption of building structures in the Mediterranean city of Tel-Aviv, Israel. Energy and Buildings, v. 204, n. 1 p. 1-18, dez. 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.109460
PAGLIOLICO, S. L.; LO VERSO, V. R. M.; BOSCO, F.; MOLLEA, C. A Novel Photo-bioreactor Application for Microalgae Production as a Shading System in Buildings. Energy Procedia, v. 111, p. 151-160, mar. 2017. DOI: https://doi.org/ 10.1016/J.EGYPRO.2017.03.017
PRUVOST, J.; GOUIC, B. L.; LÉPINE, O.; LEGRAND, J. Microalgae culture in building-integrated photobioreactors: Biomass production modelling and energetic analysis. Chemical Engineering Journal, v. 284, p. 850-861, jan. 2016. DOI: https://doi.org/10.1016/j.cej.2015.08.118
ONCEL, S. S.; ÖNCEL, D. S.; Bioactive Façade System Symbiosis as a Key for Eco-Beneficial Building Element. Environmentally-Benign Energy Solutions, p. 97-122, 2019. DOI: https://doi.org/10.1007/978-3-030-20637-6_5
ONCEL, S. S.; ÖNCEL, D. S.; KÖSE, A.; Façade integrated photobioreactors for building energy efficiency. Start-Up Creation: The Smart Eco-Efficient Built Environment, p. 237-299, 2016. DOI: https://doi.org/10.1016/B978-0-08-100546-0.00011-X
UMDU, E. S.; KAHRAMAN, I.; YILDIRIM, N.; BILIR, L. Optimization of microalgae panel bioreactor thermal transmission property for building façade applications. Energy & Buildings, v.175, p.113-120, 2018. DOI: https://doi.org/10.1016/j.enbuild.2018.07.027
WILSON, M.H.; SHEA, A.; GROPPO, J.; CROFCHECK, C.; QUIROZ, D.; QUINN, J.C.; CROCKER, M. Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis. BioEnergy Research, v. 14, p. 292–302, mar. 2021. DOI: https://doi.org/10.1007/s12155-020-10178-9