Microalgae photobioreactors as passive HVAC system in Brazilian building

Authors

DOI:

https://doi.org/10.46421/entac.v19i1.2134

Keywords:

Photobioreactor, Microalgae, Bioenergy, Facades, Buildings

Abstract

The cultivation of microalgae for bioenergy generation is done in photobioreactors (PBRs). In the last decade there has been an interest in integrating these systems into building. At building facades, PBRs could act as a passive air conditioning system. The present work developed a thermoenergetic model of a commercial building in south-eastern Brazil for of PBRs as passive systems. When simulated as glazing, the PBRs reduced the energy consumption for air conditioning. The results presented are an initial analysis of the possibility of integrating PBRs into buildings in Brazil, requiring further studies to evaluate the feasibility of this integration.  

Author Biographies

Raquel Diniz Oliveira, Federal Technological Education Center of Minas Gerais

D.Sc. in  Structural Engineering at Federal University of Minas Gerais (Belo Horizonte-MG, Brazil). Tenure Professor at the Federal Technological Education Center of Minas Gerais (Belo Horizonte-MG, Brazil). 

Frederico Romagnoli Silveira Lima, Federal Technological Education Center of Minas Gerais

Postdoctoral degree in Solar Energy at the University of California, San Diego (San Diego - CA, USA). Professor at the Federal Center of Technological Education of Minas Gerais (Belo Horizonte - MG, Brazil).

References

AL DAKHEEL, J.; AOUL, T. K. Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review. Energies, v. 10, n. 10 p. 1672 -1703, out. 2017. DOI: https://doi.org/10.3390/en10101672

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE), INC. ASHRAE Guideline 55: Thermal Environmental for Human Occupacy. Atlanta, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 15220-1: Desempenho térmico de edificações Desempenho térmico de edificações - Parte 1: Definições, símbolos e unidades. Rio de Janeiro, 2005.

ELNOKALY, A. An Empirical Study Investigating the Impact of Micro-algal Technologies and their Application within Intelligent Building Fabrics. Procedia - Social and Behavioral Sciences, v. 216, p. 712-723, 2016. DOI: https://doi.org/10.1016/j.sbspro.2015.12.067

ELRAYIES, G. M. Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, v. 81, p. 1175-1191, jan. 2018. DOI: https://doi.org/10.1016/j.rser.2017.08.032

ENDRES, C. H. Modeling temperature and microalgae productivity for photobioreactors in industrial‐scale cultivation plants. 2017. 171 f. Dissertação (Mestrado em Química) – Technischen Universität München, Munique, 2017.

FERNANDEZ, F. G. A.; SEVILLA, J. M. F.; GRIMA, E. M. Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio/Technology, v. 12, p. 131-151, jan. 2013. DOI: https://doi.org/10.1007/s11157-012-9307-6

FLYNN, E. Living Architecture: A practice perspective. Architectural Research Quarterly, v. 20, n. 1 p. 20-28, mar. 2016. DOI: https://doi.org/10.1017/S1359135516000166

HEREDIA, V; GONÇALVES, O; MARCHAL, L; PRUVOST, J. Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions. Energies, v. 14, n. 5, p. 1-15, fev.2021. Doi: https://doi.org/10.3390/en14051246

KERNER, M.; GEBKEN, T.; SUNDARRAO, I.; HINDERSIN, S.; SAUSS, D.; Development of a control system to cover the demand for heat in a building with algae production in a bioenergy façade. Energy and Buildings, v. 184, p. 65-71, Fev. 2019. DOI: https://doi.org/10.1016/j.enbuild.2018.11.030

KOLLER, M. Design of Closed Photobioreactors for Algal Cultivation. Algal Biorefineries, v. 2, p. 133-186, Jan. 2015. DOI: 10.1007/978-3-319-20200-6_4

LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES. Manual de aplicação da INI-C: Edificações Comerciais, de Serviços e Públicas. Santa Catarina, 2021.

LAGE, S.; GOJKOVIC, Z.; FUNK, C.; GENTILI, F.G. Algal Biomass fromWastewater and Flue Gases as a Source of Bioenergy. Energies, v. 11, n. 3, p. 664-694, mar. 2018. DOI: https://doi.org/10.3390/en11030664

LAKENBRINK, H.; PETERSEN, J.P.; ROEDEL, C. Smart Material House - BIQ. IBA Hamburg GmbH, p. 1-22, jul.2013.

KIM, T. R.; HAN, S. H. Analysis for Energy Efficiency of the Algae Facade - Focused on Closed Bioreactor System, KIEAE Journal, v. 14, n. 6, p. 15-21, dez. 2014. DOI: https://doi.org/10.12813/kieae.2014.14.6.015

Negev, E.; Polikovsky, M.; Kribus, A.; Yezioro, A. Algae Window for reducing energy consumption of building structures in the Mediterranean city of Tel-Aviv, Israel. Energy and Buildings, v. 204, n. 1 p. 1-18, dez. 2019. DOI: https://doi.org/10.1016/j.enbuild.2019.109460

PAGLIOLICO, S. L.; LO VERSO, V. R. M.; BOSCO, F.; MOLLEA, C. A Novel Photo-bioreactor Application for Microalgae Production as a Shading System in Buildings. Energy Procedia, v. 111, p. 151-160, mar. 2017. DOI: https://doi.org/ 10.1016/J.EGYPRO.2017.03.017

PRUVOST, J.; GOUIC, B. L.; LÉPINE, O.; LEGRAND, J. Microalgae culture in building-integrated photobioreactors: Biomass production modelling and energetic analysis. Chemical Engineering Journal, v. 284, p. 850-861, jan. 2016. DOI: https://doi.org/10.1016/j.cej.2015.08.118

SARDÁ, R. C.; VICENTE, C. A. Case Studies on the Architectural Integration of Photobioreactors in Building Facades. Nano and Biotech Based Materials for Energy Building Efficiency, p. 457-484, fev. 2016. DOI: https://doi.org/10.1007/978-3-319-27505-5_17

WILSON, M.H.; SHEA, A.; GROPPO, J.; CROFCHECK, C.; QUIROZ, D.; QUINN, J.C.; CROCKER, M. Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis. BioEnergy Research, v. 14, p. 292–302, mar. 2021. DOI: https://doi.org/10.1007/s12155-020-10178-9

Published

2022-11-07

How to Cite

DUARTE, Matheus de Andrade; OLIVEIRA, Raquel Diniz; LIMA, Frederico Romagnoli Silveira. Microalgae photobioreactors as passive HVAC system in Brazilian building. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 19., 2022. Anais [...]. Porto Alegre: ANTAC, 2022. p. 1–17. DOI: 10.46421/entac.v19i1.2134. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/2134. Acesso em: 25 nov. 2024.

Issue

Section

(Inativa) Conforto Ambiental e Eficiência Energética

Most read articles by the same author(s)

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.