Application of humidity sensors for monitoring built cultural heritage
DOI:
https://doi.org/10.46421/entac.v20i1.5771Keywords:
Sensor, Historical heritage, Moisture, Digital TwinAbstract
This article presents a study on the use of capacitive humidity sensors to monitor rising and falling humidity phenomena in historic masonry buildings. The proposed system consists of installing a mesh of capacitive humidity sensors on the facades of buildings, which communicate with a digital model of the building dedicated to monitoring pathologies in the built environment. During the research process, the layers of data collection, communication (wireless network) and the interface with the BIM model — “Building Information Modeling” were implemented. The microcontroller used for the integration between the physical and digital object was the ESP32, a low-cost and low-power integrated board. Preliminary research results demonstrate that, through the use of low-cost sensors, it is feasible to combine advanced sensing technology with the conservation of built cultural heritage. Furthermore, it is possible to avoid problems that could compromise the integrity of the building, incur significant repair costs, as well as pose risks to the health of occupants due to the presence of mold and fungi.
References
KÜHL, B. M. Preservação de Bens Culturais. PosFAUUSP, São Paulo, Brasil, v. 19, n. 31, p. 202-209, 2012. DOI: https://
doi.org/10.11606/issn.2317-2762.v19i31p202-209
HESS, M. et al. Informing Historical Preservation with the Use of Non-destructive Diagnostic Techniques: A Case Study at Ecab,
Quintana Roo, Mexico. In: IOANNIDES, M. et al. (Eds.) Digital Heritage - Progress in Cultural Heritage: Documentation,
Preservation, and Protection. EuroMed 2014. Lecture Notes in Computer Science, v. 8740. Springer, Cham, 2014. DOI: https://
doi.org/10.1007/978-3-319-13695-0_67
BRUNO S.; FATIGUSO, F. Building conditions assessment of built heritage in historic building information modeling. International
Journal of Sustainable Development and Planning, v. 13, n. 1, p. 36-48, 2018. DOI: https://doi.org/10.2495/SDP-V13-N1-36-48
FREITAS, V. P.; GUIMARÃES, A. S. Tratamento da humidade ascensional no património histórico. Revista ALCONPAT, v. 4, n. 1, p.
-13, 2014.
ALEXAKIS, E. et al. NDT as a monitoring tool of the works progress and the assessment of materials and rehabilitation
interventions at the Holy Aedicule of the Holy Sepulchre. Construction and Building Materials, v. 189, p. 512–526, 2018.
CARDINALE, T.; BALESTRA, A.; CARDINALE, N. Thermographic mapping of a complex vernacular settlement: the case study of
Casalnuovo District within the Sassi of Matera (Italy). Energy Procedia, v. 76, p. 40-48, 2015.
GARRIDO, I. et al. Algorithms for the automatic detection and characterization of pathologies in heritage elements from
thermographic images. In: 27th CIPA International Symposium “Documenting the past for a better future”, 1-5 September 2019,
Ávila, Spain. Anais [...]. Ávila: ISPRS, 2019. p. 497-501.
GEORGESCU, M. S. et al. Heritage and Climate Changes in Romania: the St. Nicholas Church of Densus, from Degradation to
Restoration. Energy Procedia, v. 133, p. 76–85, 2017.
KILIC, G. Using advanced NDT for historic buildings: Towards an integrated multidisciplinary health assessment strategy. Journal
of Cultural Heritage, v. 16, p. 526–535, 2015.
LERMA, C. et al. Quantitative Analysis Procedure for Building Materials in Historic Buildings by Applying Infrared Thermography.
Russian Journal of Nondestructive Testing, v. 54, n. 8, p. 601–609, 2018.
DE FINO, M. et al. ‘Augmented diagnostics’ for the architectural heritage. International Journal of Heritage Architecture, v. 2, n. 2,
p. 248-260, 2018. DOI: https://doi.org/10.2495/HA-V2-N2-248-260
KLEIN, L.; LI, N.; BECERIK-GERBER, B. Imaged-based verification of as-built documentation of operational buildings. Automation in
Construction, v. 21, p. 161-171, 2012. DOI: https://doi.org/10.1016/j.autcon.2011.05.023
GROETELAARS, N. J.; AMORIM, A. L. Um panorama sobre o uso de nuvens de pontos para criação de modelos BIM. In: II Seminário
Nacional de Documentação do Patrimônio Arquitetônico com o Uso de Tecnologias Digitais, 2012, Belém. Anais […] Belém:
ARQ.DOC, 2012, p. 1-12.
SALGADO, M. S.; CANUTO, C.; RIBEIRO, L. Possibilidades oferecidas pelas tecnologias digitais na preservação do patrimônio
arquitetônico. In: RIBEIRO, R. T. M.; NÓBREGA, C. C. L. (Orgs.) Projeto e Patrimônio: Reflexões e Aplicações. 1. ed. Rio de Janeiro:
Rio Book’s, 2016.
ASTORGA, J. Projeto de Restauração: Prática e modernidade. In: RIBEIRO, R. T. M.; NÓBREGA, C. C. L. (Orgs.) Projeto e Patrimônio:
Reflexões e Aplicações. 1. ed. Rio de Janeiro: Rio Book’s, 2016.
TINOCO, J. E. L. Mapa de Danos – Recomendações Básicas. Textos para Discussão - Série 2: Gestão de Restauro, v. 43. Olinda:
Centro de Estudos Avançados da Conservação Integrada (CECI), 2009.
MERCURI, F. et al. Pulsed Thermography Applied to the Study of Cultural Heritage. Applied Sciences, v. 7, n. 1010, 2017. DOI:
https://doi.org/10.3390/app7101010
ICOMOS. Charter for the Protection and Management of the Archaeological Heritage (1990). In: 9th General Assembly,
International Committee for the Management of Archaeological Heritage (ICAHM), Lausanne, 1990.
ICOMOS. Principles for the Recording of Monuments, Groups of Buildings and Sites (1996). In: 11th ICOMOS General Assembly in
Sofia, Sofia, 1996.
ICOMOS. Charter on the Protection and Management of Underwater Cultural Heritage (1996). In: 11th ICOMOS General Assembly
in Sofia, Sofia, 1996.
DEL LAMA, E. A. Estudos de Conservação em Pedra. Tese (Livre-Docência em Mineralogia e Geotécnica) – Instituto de Geociências,
Universidade de São Paulo, São Paulo, 2016. DOI: https://doi.org/10.11606/T.44.2017.tde-21022017-095626
LIÑÁN, C. R. et al. Application of Non-Destructive Techniques in the Inspection of Wooden Structures of Protected Buildings: The
Case of Nuestra Señora de los Dolores Church (Isla Cristina, Huelva). International Journal of Architectural Heritage, v. 9, n. 3, p.
-340, 2015. DOI: https://doi.org/10.1080/15583058.2013.771292
SFARRA, S. et al. Santa Maria di Collemaggio Church (L’Aquila, Italy): Historical Reconstruction by Non-Destructive Testing
Techniques. International Journal of Architectural Heritage. v. 9, n. 4, p. 367–390, 2015. DOI: https://
doi.org/10.1080/15583058.2013.794376
TAVUKÇUOǦLU, A. Non-Destructive Testing for Building Diagnostics and Monitoring: Experience Achieved with Case Studies.
MATEC Web of Conferences, v. 149, n. 01015, 2018. DOI: https://doi.org/10.1051/matecconf/201814901015
VALERO, L. R.; SASSO, V. F.; VICIOSO, E. P. In situ assessment of superficial moisture condition in façades of historic buildings using
non-destructive techniques. Case Studies in Construction Materials, v. 10, n. e00228, 2019. DOI: https://doi.org/10.1016/
j.cscm.2019.e00228
JONES, D. et al. Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and
Technology, v. 29, part A, p. 36–52, 2020. DOI: https://doi.org/10.1016/j.cirpj.2020.02.002
GRIEVES, M. (2015). Digital Twin: Manufacturing Excellence through Virtual Factory Replication. Disponível em: https://
www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication.
Acesso em: 12 abril 2024.
MESQUITA, E. et al. Boletim Técnico 11 - Caracterização, avaliação e recuperação estrutural de construções históricas. ALCONPAT,
p. 1-18, 2015. DOI: https://doi.org/10.13140/RG.2.1.1445.1606
MESQUITA, E. et al. Non-destructive characterization of ancient clay brick walls by indirect ultrasonic measurements. Journal of
Building Engineering, v. 19, p. 172–180, 2018. DOI: https://doi.org/10.1016/j.jobe.2018.05.011
TOMKO, M.; WINTER, S. Beyond digital twins – A commentary. Environment and Planning B: Urban Analytics and City Science, v.
, n. 2, p. 395-399, 2019. DOI: https://doi.org/10.1177/2399808318816992
BOJE, C. et al. Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, v. 114, n.
, 2020. DOI: https://doi.org/10.1016/j.autcon.2020.103179
MCNEEL, R. Associates. Rhinoceros 3D modelling Software. v. 5, 2014.
RUTTEN, D.; MCNEEL, R. Grasshopper 3D. www.grasshopper3d.com. 2014.
PAYNE, A.; JOHNSON, J. K. Firefly. Go from Code to Nodes — and back. 2015.
VOIGT, A. F. Memória do Bairro Trindade em Florianópolis. Revista Ágora (Florianópolis), v. 21, n. 43, p. 111-123, 2011.
ASUNI (Barcelona). VisualARQ 2: Flexible BIM. 2024. Disponível em: https://www.visualarq.com/features/. Acesso em: 13 mar.
DEMBSKI, F. et al. Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany. Sustainability, v. 12,
n. 6:2307, 2020. DOI: https://doi.org/10.3390/su12062307
BATTY, M. Digital Twins. Environment and Planning B: Urban Analytics and City Science, v. 45, n. 5, p. 817–820, 2018. DOI: https://
doi.org/10.1177/2399808318796416