Iterative Platform for Predicting Housing Energy Performance in Lightweight Systems
DOI:
https://doi.org/10.46421/entac.v20i1.5783Keywords:
Machine learning, Decision tree, Computer simulations, Energy efficiency, Social housingAbstract
This study aimed to develop a design decision tool to assist designers in optimizing the energy performance of lightweight social housing envelopes. To achieve this objective, a decision tree method was employed to train a dataset consisting of 2048 simulations of a social housing utilizing a lightweight construction system for the climate of São Paulo, Brasil. By training the dataset using an algorithm provided by the Scikit-Learn library and implmented in the Python programming language, energy consumption could be predicted for various combinations of lightweight building system housing envelope. Subsequently,utilizing the benchmarking techiniques, a consumption scale was established to classify the dwelling into three performance levels: efficient; typical; or inefficient. Finally, an iterative interface was developed for analysing the energy performance of lightweight systems houses, enabling designers to identify combinations of construction parameters associated with lower energy consumption and higher levels of energy efficiency.
References
NUNES, G. H. et al. Thermo-energetic performance of wooden dwellings: Benefits of cross-laminated timber in Brazilian climates. Journal of Building Engineering, v. 32, p. 101468, 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101468
RUKAVINA, J. M. et al. Development of lightweight steel framed construction systems for nearly-zero energy buildings. Buildings, v.12, n.7, p.929, 2022. DOI: https://doi.org/10.3390/buildings12070929
MIRANDA, F. M.; SANTOS, M. S. The building material selection importance at the building design process for its sustenability. In: CIB World Building Congress 2007. 2007. Disponível em: http://www.irbnet.de/daten/iconda/CIB4909.pdf. Acesso em: 31 outubro 2019.
SONG, Y.; ZHANG, H. Research on sustainability of building materials. In: IOP Conference Series: Materials Science and Engineering, 2018. IOP Publishing. Disponível em: https://iopscience.iop.org/article/10.1088/1757-899X/452/2/022169/pdf
CEI-Bois, European Confederation of Woodworking Industries. Disponível em: https://www.cei-bois.org/cop26. Acesso em: 31 março 2022.
SOARES, N. et al. Energy efficiency and thermal performance of lightweight steel framed (LSF) construction: A review. Renewable and Sustainable Energy Reviews, v. 78, p. 194-209, 2017. DOI: https://doi.org/10.1016/j.rser.2017.04.066
PAJEK, L. et al. Improving thermal response of lightweigth timber building envelopes during cooling season in three European locations. Journal of Cleaner Production, v. 156, p. 939-952, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.04.098
ARKAR, C.; DOMJAN, S.; MEDVED, S. Lightweight composite timber façade wall with improved thermal response. Sustainable Cities and Society, v. 38, p. 325 332, 2018. DOI: https://doi.org/10.1016/j.scs.2018.01.011
LAROCA, C.; KRUGER, E. L.; MATOS, J. M. Avaliação de desempenho térmico de protótipo de habitação social desenvolvido para o estado de Santa Catarina. In: XII Encontro Nacional de Tecnologia no Ambiente Construído, 2008, Fortaleza. Anais [...] Fortaleza, 2008.
CALDAS, L. R. et al. Avaliação do Ciclo de Vida Energético (ACVE) e do Desempenho Térmico de Uma Habitação de Light Steel Framing com o Uso de Diferentes Tipos de Isolantes Térmicos. Revista Eletrônica de Engenharia Civil, v. 11, n.2, p. 1-14, 2016. DOI: https://doi.org/10.5216/reec.V11i2.37863
TONELLI, C.; GRIMAUDO, M. Timber buildings and thermal inertia: Open scientific problems for summer behavior in Mediterranean climate. Energy and Buildings, v. 83, p. 89-95, 2014. DOI: https://doi.org/10.1016/j.enbuild.2013.12.063
ROSSI, M.; ROCCO, V. M. External walls design: the role of periodic thermal transmittance and internal areal heat capacity. Energy and Buildings, v. 68, p. 732-740, 2014. DOI: https://doi.org/10.1016/j.enbuild.2012.07.049
YANG, L. et al. A kind of PCMs-based lightweight wallboards: Artificial controlled condition experiments and thermal design method investigation. Building and Environment, v. 144, p. 194-207, 2018. DOI: https://doi.org/10.1016/j.buildenv.2018.08.020
SOLGI, E. et al. A parametric study of phase change material characteristics when coupled with thermal insulation for different Australian climatic zones. Building and Environment, v. 163, p. 106317, 2019. DOI: https://doi.org/10.1016/j.buildenv.2019.106317
LEITZKE, R. et al. The use of multi-objetive evolutionary algorithms to assess phase change materials in a residence with light framings in bioclimatic zones 1, 2 and 3. Energy and Building, v. 284, p. 112847, 2023. DOI: https://doi.org/10.1016/j.enbuild.2023.112847
SOUZA, H. A.; AMPARO, L. R.; GOMES, A. P. Influência da inércia térmica do solo e da ventilação natural no desempenho térmico: um estudo de caso de um projeto residencial em light steel Framing. Ambiente Construído, v. 11, n. 4, p. 113-128, 2011. DOI: http://dx.doi.org/10.1590/S1678-86212011000400009
ROCHA, A. C. et al. Avaliação do desempenho térmico de fachada com painéis leves em edificações de múltiplos pavimentos. In: XVI Encontro Nacional de Tecnologia do Ambiente Construído, 2016, São Paulo. Anais [...] São Paulo, 2016.
PELAZ, B. et al. Analysis of the influence of wood cladding on the thermal behavior of building façades; characterization through simulation by using different tools and comparative testing validation. Energy and Building, v. 141, p. 349-360, 2017. DOI: https://doi.org/10.1016/j.enbuild.2017.02.054
AWAD, H. et al. Evaluation of the thermal and structural performance of potential energy efficient wall systems for mid-rise wood-frame buildings. Energy and Buildings, v. 82, p. 416-427, 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.07.032
ADEKUNLE, T. O.; NIKOLOPOULOU, M. Thermal comfort, summertime temperatures and overheating in prefabricated timber housing. Building and Environment, v. 103, p. 21-35, 2016. DOI: https://doi.org/10.1016/j.buildenv.2016.04.001
ZARA, R. B. Influência dos parâmetros termofísicos no desempenho térmico de edificações residenciais em sistemas construtivos leves. 2019. 177p. Dissertação (Mestrado em Engenharia Civil) – Universidade Estadual de Londrina, Londrina, 2019.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 15575: Edificações habitacionais - Desempenho. Rio de Janeiro, 2013.
MORO, G. N.; MARTINS, R. S. V.; GIGLIO, T. G. F. Aplicação de um modelo de aprendizado de máquina em estudo de eficiência energética de edificações: foco para sistemas construtivos leves. Semina: Ciências Exatas e Tecnológicas, v.13, n.3, p. 75-84, 2022. DOI: https://doi.org/10.5433/1679-0375.2022v43n1p75
PEDREGOSA, F. et al. Scikit-learn: Machine learning in Python. The Journal of machine Learning research, v. 12, p. 2825-2830, 2011.
TSANAS, A.; XIFARA, A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, v. 49, p. 560-567, 2012.
SILVA, M. K. P. D. et al. Desenvolvimento de benchmark energético em centros de saúde. 2022.