Durability of concrete produced by replacing sand with iron ore tailings
DOI:
https://doi.org/10.46421/entac.v20i1.5921Keywords:
Concrete, Iron Ore Tailings (IOT), Durability, SustainabilityAbstract
R
Replacing sand with iron ore tailings (IOT) aims to contribute to sustainability in civil construction and reduce the environmental impact of mining. The replacement range between 30% and 50% presents the best results for compressive strength. This study produced and tested reference specimens and specimens with IOT replacement of 30% and 50% for ages 7 and 28 days. Water absorption tests (Abs), void ratio (R-void), accelerated carbonation, and acid attack were carried out. The compressive resistance experiments showed that the 30% replacement rate leads to up to 1/3 in gains when compared to the reference, while the 50% replacement resulted in losses of 30% in resistance. The incorporation of IOT showed a similar pattern for durability properties; there is less mass gain for carbonation with 30% replacement, as well as lower (Abs) and (R-void); however, the mass loss is more significant at 30% for the acid attack test. The study suggests that IOT is a viable alternative for sustainability, given the ability to reduce the extraction of natural resources with the potential for significant changes in the consumption of conventional materials and the management of mining waste.
References
Brasil, “Relatório Nacional Voluntário sobre os Objetivos do Desenvolvimento Sustentável,” Brasilia, 2017. [Online]. Available: https://sustainabledevelopment.un.org/content/documents/15801Brazil_Portuguese.pdf
K. Liu et al., “Effect of iron ore tailings industrial by-product as eco-friendly aggregate on mechanical properties, pore structure, and sulfate attack and dry-wet cycles resistance of concrete,” Case Stud. Constr. Mater., vol. 17, 2022, doi: 10.1016/j.cscm.2022.e01472.
L. T. da Silva Ramos, R. C. de Azevedo, A. C. da Silva Bezerra, L. M. do Amaral, and R. D. Oliveira, “Iron ore tailings as a new product: A review-based analysis of its potential incorporation capacity by the construction sector,” Clean. Waste Syst., vol. 7, 2024, doi: 10.1016/j.clwas.2024.100137.
Z. Ma, J. Shen, C. Wang, and H. Wu, “Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate,” Cem. Concr. Compos., vol. 132, 2022, doi: 10.1016/j.cemconcomp.2022.104629.
H. Wu, R. Hu, D. Yang, and Z. Ma, “Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study,” Constr. Build. Mater., vol. 383, 2023, doi: 10.1016/j.conbuildmat.2023.131328.
X. Huang, R. Ranade, and V. C. Li, “Feasibility Study of Developing Green ECC Using Iron Ore Tailings Powder as Cement Replacement,” J. Mater. Civ. Eng., vol. 25, no. 7, pp. 923–931, 2013, doi: 10.1061/(asce)mt.1943-5533.0000674.
X. Huang, R. Ranade, W. Ni, and V. C. Li, “Development of green engineered cementitious composites using iron ore tailings as aggregates,” Constr. Build. Mater., vol. 44, pp. 757–764, 2013, doi: 10.1016/j.conbuildmat.2013.03.088.
L. Weishi, L. Guoyuan, X. Ya, and H. Qifei, “The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings,” J. Clean. Prod., vol. 204, pp. 685–692, 2018, doi: 10.1016/j.jclepro.2018.08.309.
M. M. Arbili, M. Alqurashi, A. Majdi, J. Ahmad, and A. F. Deifalla, “Concrete Made with Iron Ore Tailings as a Fine Aggregate: A Step towards Sustainable Concrete,” Materials (Basel)., vol. 15, no. 18, 2022, doi: 10.3390/ma15186236.
A. U. Shettima, M. W. Hussin, Y. Ahmad, and J. Mirza, “Evaluation of iron ore tailings as replacement for fine aggregate in concrete,” Constr. Build. Mater., vol. 120, pp. 72–79, 2016, doi: 10.1016/j.conbuildmat.2016.05.095.
M. Yellishetty, V. Karpe, E. H. Reddy, K. N. Subhash, and P. G. Ranjith, “Reuse of iron ore mineral wastes in civil engineering constructions: A case study,” Resour. Conserv. Recycl., vol. 52, no. 11, pp. 1283–1289, 2008, doi: 10.1016/j.resconrec.2008.07.007.
W. Zhang, X. Gu, J. Qiu, J. Liu, Y. Zhao, and X. Li, “Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete,” Constr. Build. Mater., vol. 260, 2020, doi: 10.1016/j.conbuildmat.2020.119917.
S. Zhao, J. Fan, and W. Sun, “Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete,” Constr. Build. Mater., vol. 50, pp. 540–548, 2014, doi: 10.1016/j.conbuildmat.2013.10.019.
R. Mandal, S. K. Panda, and S. Nayak, “Rheology of Concrete: Critical Review, recent Advancements, and future prospectives,” Constr. Build. Mater., vol. 392, 2023, doi: 10.1016/j.conbuildmat.2023.132007.
C. S. N. (CSN), “Cimentos,” CSN, 2023. https://www.csn.com.br/homepage/cimentos/ (accessed Apr. 15, 2024).
ABNT, “NBR 16605: Cimento Portland e outros materiais em pó — Determinação da massa específica,” 2017.
ABNT, “NBR 11579: Cimento Portland — Determinação do índice de finura por meio da peneira 75 µm (no 200),” 2012.
ABNT, “NBR 17054: Agregados - Determinação da composição granulométrica - Método de ensaio,” 17054, 2022
ABNT, “NBR NM 52: Agregado miúdo - Determinação de massa específica e massa específica aparente,” NM 52, 2021
ABNT, “NBR NM 16917: Agregado graúdo - Determinação da densidade e da absorção de água,” 16917, 2021
ABNT, “NBR 6458: Grãos de pedregulho retidos na peneira de abertura 4,8 mm - Determinação da massa específica, da massa específica aparente e da absorção de água,” 6458, 2016
ABNT, “NBR 9604: Abertura de poço e trincheira de inspeção em solo, com retirada de amostras deformadas e indeformadas — Procedimento,” 9604, 2024
ABNT, “NBR 6457: Solos — Preparação de amostras para ensaios de compactação, caracterização e determinação do teor de umidade,” 6457, 2024
N. C. N. Faria, V. M. Pereira, T. R. S. Nobre, R. Cesar de O. Romano, A. C. Vieira Coelho, and S. C. Angulo, “Clinker Portland with iron ore tailing and its characterization by integrated laboratory methods,” Constr. Build. Mater., vol. 402, 2023, doi: 10.1016/j.conbuildmat.2023.132958.
ABCP, “Método de dosagem de concreto,” ABCP, 2020. https://abcp.org.br/wp-content/uploads/2020/07/Metodo_Dosagem_Concreto_ABCPonLINE_22.07.2020.pdf (accessed Aug. 15, 2020).
ABNT, “NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos,” 5739, 2018
ABNT, “NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica,” 9778, 2005
H. C. Gomes, E. D. Reis, R. C. de Azevedo, C. de S. Rodrigues, and F. S. J. Poggiali, “Carbonation of Aggregates from Construction and Demolition Waste Applied to Concrete: A Review,” Buildings, vol. 13, no. 4, 2023, [Online]. Available: https://www.mdpi.com/2075-5309/13/4/1097
L. Li and M. Wu, “An overview of utilizing CO2for accelerated carbonation treatment in the concrete industry,” J. CO2 Util., vol. 60, 2022, doi: 10.1016/j.jcou.2022.102000.
E. D. Reis et al., “Assessment of physical and mechanical properties of concrete with carbon nanotubes pre-dispersed in cement,” J. Build. Eng., vol. 89, 2024, doi: 10.1016/j.jobe.2024.109255.
Z.-X. Tian, Z.-H. Zhao, C.-Q. Dai, and S.-J. Liu, “Experimental Study on the Properties of Concrete Mixed with Iron Ore Tailings,” Adv. Mater. Sci. Eng., vol. 2016, 2016, doi: 10.1155/2016/8606505.
F. A. P. Recena, Retração do Concreto, 1st ed. Porto Alegre: EDIPUCRS, 2023.
D. Xuan, B. Zhan, and C. S. Poon, “Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates,” Cem. Concr. Compos., vol. 65, pp. 67–74, 2016, doi: 10.1016/j.cemconcomp.2015.10.018.
B. Zhan, C. S. Poon, Q. Liu, S. Kou, and C. Shi, “Experimental study on CO2 curing for enhancement of recycled aggregate properties,” Constr. Build. Mater., vol. 67, pp. 3–7, 2014, doi: 10.1016/j.conbuildmat.2013.09.008.
Y. M. Carvalho, B. S. Pinheiro, V. G. Pinto, and E. M. F. Brandt, “Performance of blended concrete with supplementary cementitious materials under sulfuric acid-a systematic review,” Rev. Mater., vol. 27, no. 2, 2022, doi: 10.1590/s1517-707620220002.1311.