Hydraulic tile containing different types of iron ore tailing: mechanical, environmental and durability properties
DOI:
https://doi.org/10.46421/entac.v20i1.6209Keywords:
Iron ore tailings (IOT), Hidraulic tile, SustentabilityAbstract
In this study, four types of iron ore tailings (IOT) were evaluated as an alternative source of raw material for the manufacture of hydraulic tiles. Eight mixtures were prepared, replacing Portland cement with RMF at 25 and 50% by weight for each type of IOT. The waste presented different chemical composition, granulometry and crystalline phases. The colorimetry of the pastes with IOT in different proportions revealed different colors, enabling the production of hydraulic tiles with a sophisticated design. The compressive strength results of cements composed with IOT proved to be adequate in relation to Brazilian and international standards for cements. Formulations with 25% IOT showed the best results in compressive strength and lower mass loss when exposed to acid attack. The flexural strength results of hydraulic tiles with different IOT combinations were satisfactory. The concentration results of toxic chemical elements/parameters were lower than the limits established by standard, indicating that the use of IOT does not present risks of environmental contamination. Finally, the combination of different types of IOT in different proportions with Portland cement demonstrated synergy, generating color variations and satisfactory mechanical properties to produce sustainable hydraulic tiles.
References
Sharma,S.; Sharma,N.K. Advanced materials contribution towards sustainable development and its construction for green buildings, Materials Today, v. 68, p. 968–973, ago. 2022. DOI: https://doi.org/10.1016/j.matpr.2022.07.394
Le, D.L.; Salomone, R.; Nguyen, Q.T. Sustainability assessment methods for circular bio-based building materials: A literature review, Journal of Environmental Management, v. 352, 9. p. 120-137, set. 2024. DOI: https://doi.org/10.1016/j.jenvman.2024.120137
Ramos, L.T.S.; Azevedo, R.C.; Bezerra, A.C.S.; Amaral, R.D. O. Iron ore tailings as a new product: A review-based analysis of its potential incorporation capacity by the construction sector, Cleaner Waste Systems, v. 7, p. 100-137, fev. 2024. DOI: https://doi.org/10.1016/j.clwas.2024.100137
Otieno, F.; Shukla, S.K. An insight into failure of iron ore mine tailings dams, International Journal of Mining Reclamation and Environment, v. 37, p. 127–147, dez. 2022. DOI: https://doi.org/10.1080/17480930.2022.2159295
Saldanha, R.B.; Caicedo, A.M.L.; Araújo, M.T.; Scheuermann Filho, H.C.; Moncaleano, C.J.; Silva, J.P.S.; Consoli, N.C. Potential use of iron ore tailings for binder production: A life cycle assessment, Construction and Building Materials, v. 365, nov. 2022, DOI: https://doi.org/10.1016/j.conbuildmat.2022.130008
Villela, M. Tratamento de rejeitos é solução alternativa e economicamente viável à barragem de mineradoras, 2016, IPT, disponível em: http//Www.Ipt.Br/Noticias), acesso em 10 de janeiro 2024.
Zhao, J.; Ni, K.; Su, Y.; Shi, Y. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties, Construction and Building Materials, v. 286, mar. 2021, DOI: https://doi.org/10.1016/j.conbuildmat.2021.122968
Arbili, M.M.; Alqurashi, M.; Majdi, A.; Ahmad, J.; Deifalla, A.F. Concrete Made with Iron Ore Tailings as a Fine Aggregate: A Step towards Sustainable Concrete, Materials, v. 15, set. 2022, DOI: https://doi.org/10.3390/ma15186236
Pires, M.; Fidelis, R.J.A.; Resende, D.S.; Bezerra, A.C.S. Phosphate rock waste in the production of cement tile, Results Engineering, v. 16, out. 2022, DOI: https://doi.org/10.1016/j.rineng.2022.100701
Fontes, W.C.; Carvalho, J.M.F.; Andrade, L.C.R.; Segadães, A.M.; Peixoto, R.A.F. Assessment of the use potential of iron ore tailings in the manufacture of ceramic tiles: From tailings-dams to “brown porcelain”, Construction and Building Materials, v. 206, p. 111–121, fev. 2019, DOI: https://doi.org/10.1016/j.conbuildmat.2019.02.052
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 9457: Ladrilhos hidráulicos para Pavimentação - Espcificação e Métodos Ensaio, Rio de Janeiro, 2013.
AGÊNCIA NACIONAL DE MINERAÇÃO (ANM), Report mensal Barragens de Mineração, 2023, disponível em: https://www.gov.br/anm/pt-br/assuntos/barragens, acesso em 10 de janeiro 2024.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 10007: Amostragem Resíduos Sólidos, Rio de Janeiro, 2004.
Wimalasiri, P.M.; Harrison, R.; Olejar,K.J.; Hider, R.;Tian, B. Colour characterisation of two-year-old Pinot noir wines by UV–Vis spectrophotometry and tristimulus colourimetry (CIELab): Effect of whole bunch or grape stems addition, Interntional Journal of Food Science Technology, v. 58, p. 1176–1185, Dez. 2022. DOI: https://doi.org/10.1111/ijfs.16264
Tsivas, D.; Vlyssides, A.; Vlysidis, A. Differentiation of the composting stages of green waste using the CIELAB color model, Journal of Chemical Technology and Biotechnology, mar. 2023. DOI: https://doi.org/10.1002/jctb.7370
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 7215: Cimento Portand - Determinação da resistência à compressão de corpos de prova cilíndricos, Rio Janeiro, 2019.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 10005: Procedimento para obtenção de extrato lixiviado de resíduos sólidos, Rio de Janeiro, 2004.
Li, H.; Chen, H.; Wei, M.; Wang, R.; Lei, N.; Wang, Q. Design and preparation of double-layer iron ore tailings cement-based electromagnetic wave absorbing materials containing carbon black and steel fiber, Construction and Building Materials, v. 364, dez. 20232. DOI: https://doi.org/10.1016/j.conbuildmat.2022.129972
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 10004: Resíduos sólidos - Classificação, Rio de Janeiro, 2004.