ANÁLISE DE DESEMPENHO TÉRMICO DE SISTEMA DE COBERTURA PARA AQUECIMENTO E RESFRIAMENTO EM ZONAS SUBTROPICAIS
DOI:
https://doi.org/10.46421/entac.v18i.787Keywords:
solar heat gain, solar radiation, simulation, computer fluid dynamicsAbstract
Temperate places have high annual thermal amplitude. In those areas, buildings must provide thermal comfort during hot and cold seasons. This study explains the method to design the geometry of a static roof parametrically. The system should reduce heat gain in summer and increase it in winter in Curitiba, Paraná. Different tools were used to model, iterate and simulate radiation and CFD (computer fluid dynamics), namely Rhinoceros, Grasshopper, Diva-for-Rhino, Colibri, Design Explorer 2 and Solidworks Flow. The results show good performance of the proposed geometry both for winter and summer solstices.
References
3DS. SolidWorks. Disponível em: <https://www.solidworks.com/>. Acesso em: 1 maio. 2020.
BRITO FILHO, J. P.; SANTOS, T. V. O. Thermal analysis of roofs with thermal insulation layer and reflective coatings in subtropical and equatorial climate regions in Brazil. Energy and Buildings, v. 84, p. 466–474, 2014.
CORE STUDIO. Design Explorer 2. Disponível em: <https://tt-acm.github.io/DesignExplorer/>. Acesso em: 1 maio. 2020.
DABAIEH, M.; WANAS, O.; HEGAZY, M. A.; JOHANSSON, E. Reducing cooling demands in a hot dry climate: A simulation study for non-insulated passive cool roof thermal performance in residential buildings. Energy and Buildings, v. 89, p. 142–152, 2015.
DE LUIS, F. J.; PÉREZ-GARCÍA, M. Parametric study of solar gains in saw-tooth roofs facing the equator. Renewable Energy, v. 29, n. 8, p. 1223–1241, 2004.
DEKAY, M.; BROWN, G. Z. Sun, Wind, and Light: Architectural Design Strategies. 3. ed. New Jersey: John Wiley & Sons, Inc., 2014.
GANGULY, A.; CHOWDHURY, D.; NEOGI, S. Performance of Building Roofs on Energy Efficiency - A Review. Energy Procedia, v. 90, n. December 2015, p. 200–208, 2016.
GIVONI, B. Solar heating and night radiation cooling by a Roof Radiation Trap. Energy and Buildings, v. 1, n. 2, p. 141–145, 1977.
HU, J.; YU, X. B. Adaptive thermochromic roof system: Assessment of performance under different climates. Energy and Buildings, v. 192, p. 1–14, 2019.
KRÜGER, E.; SUZUKI, E.; MATOSKI, A. Evaluation of a Trombe wall system in a subtropical location. Energy and Buildings, v. 66, p. 364–372, 2013.
LAMBERTS, R.; DUTRA, L.; PEREIRA, F. O. R. Eficiência Energética na Arquitetura. 3. ed. [s.l.] Eletrobrás, 2012.
LOONEN, R. C. G. M.; TREKA, M.; CÓSTOLA, D.; HENSEN, J.L.M. Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, v. 25, p. 483–493, 2013.
MCNEEL, R. Grasshopper 3D. Disponível em: <https://www.grasshopper3d.com/>. Acesso em: 1 maio. 2020a.
MCNEEL, R. Rhinoceros. Disponível em: <https://www.rhino3d.com/>. Acesso em: 1 maio. 2020b.
RUNSHENG, T.; MEIR, I. A.; ETZION, Y. An analysis of absorbed radiation by domed and vaulted roofs as compared with flat roofs. Energy and Buildings, v. 35, n. 6, p. 539–548, 2003.
SOLEMMA LLC. DIVA. Disponível em: <https://solemma.com/Diva.html>. Acesso em: 1 maio. 2020.
SOLIDWORKS. Solidworks Flow simulation 2012 Technical Reference. [s.l: s.n.].
WAGDY, A.; GARCÍA-HANSEN, V.; ISOARDI, G.; PHAM, K. A parametric method for remapping and calibrating fisheye images for glare analysis. Buildings, v. 9, n. 10, p. 1–24, 2019.