VARIAÇÕES NA TEMPERATURA DE SUPERFÍCIE DE PELE CONFORME CONFIGURAÇÃO DE ILUMINAÇÃO AMBIENTAL

Authors

  • Cintia Akemi Tamura Universidade Tecnológica Federal do Paraná
  • Eduardo L. Krüger Universidade Tecnológica Federal do Paraná
  • Faimara do Rocio Strauhs Universidade Tecnológica Federal do Paraná

DOI:

https://doi.org/10.46421/entac.v18i.809

Keywords:

Daylight, Climate chamber, Circadian action factor (acv), Skin temperature

Abstract

Studies have shown that daylighting may play a relevant role both in terms of light and thermal perception of the built environment, and in complex physiological mechanisms not related to vision. These include secretion of hormones linked to the regulation of sleep-wake cycles and body thermal homeostasis. The present study aims to explore relationships between different lighting characteristics of a test-environment and changes in skin surface temperature (Tsk) of male subjects. Correlations between light-related variables measured for different configurations of light sources (natural equatorial, non-equatorial and electrical) and Tsk of 16 participants have been analyzed. Data were gathered in the LOBSTER climate chamber, at the Karlsruher Institut für Technologie (KIT), located in Karlsruhe, Germany. Five-hour sessions took place inside the chamber and under thermally controlled conditions over 36 winter, spring and summer periods. Measured Tsk were found to be strongly related to light variables and such relationship will depend on the availability of daylight. The collected Tsk data showed a significant correlation with tested ambient lighting, and the relationship is directly linked to the availability of natural light. Electric lighting environments without configuration changes, in turn, possibly lead to circadian interruptions. The study resultsfrom an ongoing Post-Doctorateresearch.

References

BAKER, F. C. et al. Sleep and 24-hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives. The Journal of physiology, v. 530, n. 3, p. 565-574, 2001.

BARON, K. G.; REID, K. J. Circadian misalignmentand health. International review of psychiatry, v. 26, n. 2, p. 139-154, 2014.

BRAINARD, G. C. et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. Journal of Neuroscience, v. 21, n. 16, p. 6405-6412, 2001.

CAJOCHEN, C. Alerting effects of light. Sleep medicine reviews, v. 11, n. 6, p. 453-464, 2007.

CHELLAPPA, S. L. et al. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert?PloS one, v. 6,n. 1, 2011.

Commission Internationale de l´Eclairage. CIE Research Strategy. Viena, abr. 2020. Fonte: <http://files.cie.co.at/CIE%20Research%20Strategy%20(April%202020)%20-%20Topic%201.pdf>. Acesso: 4 mai. 2020.

DEUTSCHES INSTITUT FÜR NORMUNG. DIN 5034: Tageslicht in Innenräumen. Berlin, 1997.

DUFFY, J. F. et al. Sex difference in the near-24-hour intrinsic period of the human circadian timing system.

Proceedings of the National Academy of Sciences, v. 108, n. Supplement 3, p. 15602-15608, 2011.

EAGLES, J. M. Light therapy and seasonal affective disorder. Psychiatry, v. 8, n. 4, p. 125-129, 2009.

GALASIU, A. D.; VEITCH, J. A. Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review. Energy and buildings, v. 38, n. 7, p. 728-742, 2006.

GALL, D. ET al. Die Ermittlung von Licht-und Farbfeldgrößen zur Bestimmung der spektralen Wirkung des Lichtes. Technische Universität Ilmenau, Fachgebiet Lichttechnik.

HUBALEK, S.; BRINK, M.; SCHIERZ, C. Office workers’ daily exposure to light and its influence on sleep quality and mood. Lighting research & technology, v. 42, n. 1, p. 33-50, 2010.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/FDIS 9886: Ergonomics-Evaluation of thermal strain by physiological measurement. Geneva, 2003.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO7730: Ergonomics of the thermal environment -analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Oslo, Norway, 2005.

HRASKA, J. Chronobiological aspects of green buildings daylighting. Renewable Energy, v. 73, p. 109-114, 2015.

KARATSOREOS, I. N. Effects of circadian disruption on mental and physical health. Current neurology and neuroscience reports, v. 12, n. 2, p. 218-225, 2012.

KULVE, Marije et al. Correlated colour temperature of morning light influences alertness and body temperature. Physiology & behavior, v. 185, p. 1-13, 2018.

OSRAM. Product Family Datasheet Lumilux T8. 2018. Source: <https://www.osramlamps.com/ecatalog/lamps/fluorescent-lamps/fluorescent-lamps-t8/lumilux-t8/index.jsp>. Acesso em: 6 feb. 2018.

THAPAN, K.; ARENDT, J.; SKENE, D. J. An action spectrum for melatonin suppression: evidence for a novel non‐rod, non‐cone photoreceptor system in humans. The Journal of physiology, v. 535, n. 1, p. 261-267, 2001.

WEISS, T.; TAMURA, C.; KRÜGER, E. L. Uso de simulação computacional como suporte a um estudo de iluminação natural em câmara climática. XIII Encontro Nacional e IX Encontro Latino-americano de Conforto no Ambiente Construído. Anais...,2015.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO/FDIS 9886: Ergonomics-Evaluation of thermal strain by physiological measurement. Geneva, 2003.

Published

2020-11-04

How to Cite

TAMURA, Cintia Akemi; KRÜGER, Eduardo L.; STRAUHS, Faimara do Rocio. VARIAÇÕES NA TEMPERATURA DE SUPERFÍCIE DE PELE CONFORME CONFIGURAÇÃO DE ILUMINAÇÃO AMBIENTAL. In: NATIONAL MEETING OF BUILT ENVIRONMENT TECHNOLOGY, 18., 2020. Anais [...]. Porto Alegre: ANTAC, 2020. p. 1–9. DOI: 10.46421/entac.v18i.809. Disponível em: https://eventos.antac.org.br/index.php/entac/article/view/809. Acesso em: 18 jul. 2024.

Issue

Section

(Inativa) Conforto Ambiental e Eficiência Energética

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.