DEFINIÇÃO DE FAIXA DE CONFORTO TÉRMICO DO ÍNDICE PET PARA ESPAÇOS ABERTOS EM CLIMA CFA
DOI:
https://doi.org/10.46421/entac.v18i.892Keywords:
Thermal comfort, Urban climate, Thermal comfort index, PETAbstract
The growth of cities interferes in the urban density and causes morphological changes that affect local microclimates. These changes in the urban space impact the thermal satisfaction of users regarding thermal comfort in outdoor areas. In open areas, "survey" studies can serve to define thermal comfort ranges, thereby calibrating existing thermal comfort indices. The present study defines a thermal comfort range for the Physiologically Equivalent Temperature index (PET) for a Cfa climate type (Pelotas – RS). The analyzed data were collected between July 2019 and March 2020. The measurements were carried out at five different spots of the city and with a samples of 1978 thermal perception votes collected during 53 monitoring campaigns. For recording climatic data, the TGD-400 equipment was used. The thermal comfort range for Pelotas has an upper limit of 23.3°C and a lower limit of 15.9°C, and thermal neutrality is reached at 19.6°C, all values in PET scale.
References
BARAKAT, A.; AYAD, H.; EL-SAYED, Z. Urban design in favor of human thermal comfort for hot arid climate using advanced simulation methods. Alexandria Engineering Journal, [s. l.], v. 56, n. 4, p. 533-543, 2017.
DA SILVEIRA HIRASHIMA, Simone Queiroz; DE ASSIS, Eleonora Sad; NIKOLOPOULOU, Marialena.
Daytime thermal comfort in urban spaces: A field study in Brazil. Building and Environment, v. 107, p. 245-253, 2016.
GOBO, João Paulo Assis; GALVANI, Emerson; WOLLMANN, Cássio Arthur. Subjective Human Perception of Open Urban Spaces in the Brazilian Subtropical Climate: A First Approach. Climate, v. 6, n. 2, p. 24, 2018.
HÖPPE, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy and buildings, [S.l.], v.34, n.6, p.661–665, 2002.
HUANG, J.; CEDEÑO-LAURENT, J. G.; SPENGLER, J. D. CityComfort+: A simulation-based method for predicting men radiant temperature in dense urban areas. Building and Environment, [s. l.], v. 80, p. 84-95, 2014.
INSTITUTO NACIONAL DE METEREOLOGIA. Normais Climatológicas 1981-2010. INMET, BRASIL, 2018.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10551. Ergonomics of the thermal environments – Assessment of the influence of the thermal environment using subjective judgment scales. Genève: ISO, 2015.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7726. Ergonomics of the thermal environments – Instruments for measuring physical quantities. Genève: ISO, 1998.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 7730. Ergonomics of the thermal environment – Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Genève, 2005.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 8996. Ergonomics of the thermal environments – Determination of thermal metabolic rate. Genève: ISO, 2004.
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 9920. Ergonomics of the thermal environments – Estimation of thermal insulation and water vapour resistance of a clothing ensemble. Genève: ISO, 2007.
JOHANSSON, E. Urban thermal comfort in the tropics. In: EMMANUEL, R. Urban Climate in the tropics: Rethinking Planning and Design Opportunities. London: Imperial College Press, 2016. p. 163-204.
JOHANSSON, E.; THORSSON, S.; EMMANUEL, R.; KRÜGER, E. Instruments and methods in outdoor thermal comfort studies - The need for standardization. Urban Climate, Vol. 10, p. 346-366, 2014.
KRÜGER, E. L.; ROSSI, F. A.; CRISTELI, P. S.; SOUZA, H. A. de. Calibração do índice de conforto para espaços externos Physiological Equivalent Temperature (PET) para Curitiba. Ambiente Construído, Porto Alegre, v. 18, n. 3, p. 135-148, jul./set. 2018.
LIN, T.-P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and environment, [S.l.], v.44, n.10, p.2017–2026, 2009.
LUCCHESE, J. R.; MIKURI, L. P.; FREITAS, V. S. de; ANDREASI, W. A. Application of Selected Indices on Outdoor Thermal Comfort Assessment in Midwest Brazil. International Journal of Energy and Environment, v. 7, n. 4, p. 291-302, 2016.
MATZARAKIS, A.; BLAZEJCZYK, K.; AMELUNG, B. Climate Change and Tourism Assessment and Coping Strategies. Freiburg: Maastricht-Warsaw, 2007.
MATZARAKIS, A.; MAYER, H. Another Kind of Environmental Stress: thermal stress. WHO Newsletter, v. 18, p. 7-10, 1996.
MATZARAKIS, A.; RUTZ, F.; MAYER, H. Modeling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology, v. 54,n. 2, p. 131-139, 2007.
MAYER, H.; HÖPPE, P. Thermal comfort of man in different urban environments. Theoretical and Applied Climatology, [s. l.], v. 38, n. 1, p. 43-49, 1987.
ROSSATO, MAÍRA SUERTEGARAY. Os climas no Rio Grande do Sul: variabilidade, tendências e tipologia. Tese de Doutorado - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geografia, Porto Alegre, RS - BR, 2011.
SILVA, F. T.; ALVAREZ, C. E. de. An Integrated Approach For Ventilation's Assessment on Outdoor Thermal Comfort. Building and Environment, v. 87, p. 59-71, 2015.
SPAGNOLO, J.; DE DEAR, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Building and Environment, [S.l.], v.38, n.5, p.721–738, 2003.
THORSSON, S.; LINDBERG, F.; ELIASSON, I.; HOLMER, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology,v.27, p.1983-1993, 2007.